Tuesday, October 9, 2007

Indian S&T 1947-97

Business India, August 11-24, 1997

Prisoner of autarky

Indian S&T is yet to recover from the fallout of autarkic policies and the Pokharan nuclear explosion

Shivanand Kanavi

Along with the rise of the modern nationalist movement and an attendant intellectual renaissance, the first quarter of the 20th century saw the rise of a few brilliant scientists like S. Ramanujan, C.V. Raman, S.N. Bose and M.N. Saha. They won worldwide acclaim for their work in number theory, molecular physics, quantum statistics and astrophysics. Although Europe was the seat of high science at that time, they did not emigrate and instead continued their pursuit of science in India despite the paucity of funds and poor educational and research infrastructure. In the process they also trained a few young researchers. The research groups pre-Independence were centred around these individuals in the mould of guru shishya parampara.

Institutional science
Then came Independence and along with Nehru and his brand of modernisation, a new breed of scientists like Homi Bhabha, Vikram Sarabhai and Shanti Swarup Bhatnagar took over as science administrators. Having studied in Europe, Bhabha and Sarabhai saw the rise of organised science in the period between the two World Wars, and they tried to repeat the experience in India by building government-funded R&D institutes outside the university system. The era of institutional science began.

Their access to Nehru and prominent industrial houses helped Bhabha and Sarabhai in raising new institutions like the Tata Institute of Fundamental Research (TIFR) and the Atomic Energy Establishment (now called the Bhabha Atomic Research Centre) at Mumbai and Physical Research laboratory (PRL), at Ahmedabad ..

Bhabha attracted a large number of talented scientists and engineers from India and abroad to work at the institutes. He understood that Indian science would gain only through international contact. He not only sent a large number of young scientists abroad for higher studies but also ensured that a large number of distinguished scientists including Nobel Laureates visited TIFR to give lectures. He modeled TIFR after the Institute of Advanced Study at Princeton and encouraged the development of first rate groups in mathematics and physics. Expertise in many emerging fields like nuclear physics, electronics, computers, radio astronomy, and elementary particle physics was developed here.

Under Sarabhai's leadership the PRL at Ahmedabad, with its emphasis on cosmic rays and radio physics, became the birth place for Indian expertise in space sciences. Besides being excellent basic research centres, TIFR and PRL were the cradles for the nuclear, and space programmes that took off later.

Shanti Swarup Bhatnagar wanted to develop the more mundane industrial technologies. A council to encourage industrial research had been set up by the colonial government in 1942. The idea was developed by Bhatnagar with Nehru's active encouragement and a network of laboratories starting with the National Physical Laboratory, (Delhi) and the National Chemical Laboratory (NCL, Pune) were built in 1950. From this grew the Council of Scientific and Industrial Research (CSIR) which at present is the largest chain of publicly funded research laboratories in the world comprising over 40 laboratories.

Within a decade of the formation of the Atomic Energy Commission in 1948, India became the first Asian country to build its own research reactor-Apsara in 1957 at Trombay. The problem that worried Bhabha was how to use India's limited resources of uranium to produce electricity without enriching uranium and more importantly how to use the vast reserves of thorium on the beaches of Kerala. The Canadians came forward with an answer with their Pressurised Heavy Water Reactor technology. India adopted this, while at the same time buying conventional reactors from General Electric Company of USA to gain experience in nuclear power. As a result, Tarapur Atomic Power Station was built on conventional grounds and a contract was signed with the Canadians to build the Rajasthan Atomic Power Station.

While the Trombay group went ahead in acquiring expertise in nuclear physics, the PRL Group under Sarabhai started the space programme, modestly. Sarabhai negotiated with the Bishop of an old church at Thumba (near Thiruvananthapuram) to use the premises to fabricate the first sounding rockets in 1963. Since everything in the field of rocketry had to be learnt from scratch, Sarabhai used his contacts in NASA, and among the scientists involved in the French and Russian space programmes to get as much information as possible. After Bhabha's death in an Air-India crash near Geneva in 1966, Sarabhai took over the leadership of both space and nuclear programmes. However, matters changed drastically for the nuclear programmes after Sarabhai's death in 1972. To the then prime minister, Indira Gandhi, atoms were an instrument of power. Within a short while, she reoriented the programme towards generating a bomb.

Pokharan fallout
The underground nuclear explosion at Pokharan in the Thar desert in 1974 changed the course not only of the nuclear programme but of Indian science in general. Till-today, Indian R&D institutions and technology programmes cannot import a state-of-the-art CNC lathe or a special purpose pump much less hi-tech electronics and supercomputers, thanks to the embargoes. In fact, Canada abandoned the Rajasthan nuclear power project mid-way.

The wisdom that flowed from the PMO at this time was self reliance and import substitution. Nobody asked the question 'Is it cost-effective, original or globally competitive?’ as long as the science mandarins claimed it was a breakthrough in indigenous import substitution. The darkage of post-Independent S&T began. From which we have yet to recover.

With great difficulty; nuclear engineers have today managed to grasp the Pressurised Heavy Water Reactor technology, but in the process, are left with obsolete technology. A latecomer like South Korea with S&T infrastructure hardly comparable to India's, today produces 10,316 MW of nuclear power with 11 nuclear reactors, while India has an installed capacity of only 1,700 MW from 10 nuclear reactors.

Moreover, the transparency of the nuclear programme during. Bhabha and Sarabhai's time, later turned into extreme intolerance towards critics. Today there are serious questions to be raised about the money spent on atomic energy and the returns on it.

However Satish Dhawan, who took over the leadership of space programme in 1972, retained the openness and informality required for the cutting edge in science and engineering. Even though the technology embargoes were forcing Indian Space Research Organisation too to reinvent the wheel, he used the build-or-buy choice intelligently. Solid fuelled rocket technology had obvious applications in missiles and hence- no one was ready to give it. So Dhawan concentrated on developing it at Thiruvananthapuram.

Liquid fuelled rocket engines, which are the more efficient and necessary components of satellite launching technology, were a different cup of tea. Using his excellent personal contacts, Dhawan convinced the French to transfer the liquid fuelled rocket technology. He also formulated a well charted road map to reach the goal of satellite launching capability. Another group concentrated on learning the intricacies of remote sensing and communication satellites. When they did not get an electronic component from the US they either built it themselves or bought it -from the Europeans or Japanese. Dhawan also negotiated for free launches from the French and the Russians. Today the space programme stands out as one of the few publicly funded initiatives in India that has achieved world class standards.

With the gradual opening up and liberalisation in trade in the 1980s, a new initiative to focus on certain technologies was taken by the then PM, Rajiv Gandhi. Operating "on a mission mode", where a multidisciplinary group comes together to achieve a target and is then disbanded without creating bureaucracies, became the new paradigm. Sam Pitroda and his team in the telecom technology mission came to the fore. Belatedly India decided to enter the era of digital telecommunications. The result was the switch designed by the Centre for Development Of Telematics (C-DOT) meant for small exchanges. However before C-DOT could deliver the large switch it suffered a setback. In an increasingly fractured and revengeful polity Pitroda's closeness to Rajiv Gandhi was the excuse used by the succeeding government to cripple the telecom mission. So in the 1990s, when worldwide, telecom is undergoing fast technological changes, India once again lags miserably.

In the last ten years, successive governments have been busy fighting for survival and the initiative for the development of S&T has fallen to an extent on lower level R&D managers. Many science administrators have
created bureaucratic fiefdoms while a few have used the opportunity to reform.

For example R.A.Mashelkar, director of NCL, used the opportunity to make his colleagues aware of their intellectual property rights and pushed them towards proactive global technology marketing. NCL today has emerged as a world class centre in catalysis and polymer science. As the director general of CSIR, Mashelkar now has the task of converting his slogan of 'research as business' into reality.

At cross roads
Research in the private sector has been a joke so far. Equipment and wages of personnel involved in routine quality control, which is part of the manufacturing activity, listed by the industry as R&D expenditure to avail of the tax breaks. However the new GATT regime and the pressure on India to change, its patent laws is forcing a handful of domestic pharmaceutical companies to invest in new drug research.

If the state of bio-technology is poor due to the indolence of the private sector the fate of the other major technology of the 21st century-infotech- has been sealed by a luddite attitude towards computers. As a result there is hardly a domestic base for information technology without which no real software industry can come into being. The software industry requires the installation of a large number of computers in the government, financial sector and the corporate sector who then drive the market for application packages. However due to flawed policies that looked at computers not as an opportunity to increase productivity and create new jobs but as villains that would take away jobs India today has a pitifully small number of computers, hardly a quarter of those installed in China, leave alone other advanced countries. In the circumstances, Indians have developed core competency in customized solutions and software services for corporate clients abroad. This sector is growing at an impressive 50 percent growth rate. Software product development with higher margins and visibility has started only in the 1990s, that too on a low key. As an observer said: "What software industry do we have, we have not produced even a video game.”

To sum up, in the last 50 years Indian S&T has gone through a series of periods characterised by brilliant scientists before Independence, institutional science in the 1950s and 1960s, autarky and bureaucratisation in the 1970s and 1980s and opening up and the chance to leverage ourselves in knowledge based industries in the1990s.

Will our government, science satraps and entrepreneurs seize the hour or will we keep marking time, hearing inanities about the “third biggest pool of scientific power”?

No comments:

Post a Comment