Sunday, May 30, 2021

Shantadevi Kanavi tribute Prajavani

 

https://www.prajavani.net/artculture/article-features/shantadevi-kanavi-veteran-kannada-short-story-writer-intellectual-and-wife-of-poet-channaveera-834356.html

ನನ್ನ ಅವ್ವ: ಸತ್ವಶಾಲಿ ಮಹಿಳೆ



ಶಾಂತಾದೇವಿ ಕಣವಿ (೧೯೩೩-೨೦೨೦) 
ಹಿರಿಯ ಕಥೆಗಾರ್ತಿ ಶಾಂತಾದೇವಿ ಕಣವಿ ಯವರು ೬ ದಶಕಕ್ಕೂ ಹೆಚ್ಚು ಕಾಲ ಕನ್ನಡ ಸಾಹಿತ್ಯಸೇವೆಯನ್ನು ಮಾಡಿದರು. ಅವರ ೮ ಕಥಾಸಂಗ್ರಹಗಳು ಸಂಜೆ ಮಲ್ಲಿಗೆ, ಬಯಲು ಆಲಯ, ಮರು ವಿಚಾರ, ಜಾತ್ರೆ ಮುಗಿದಿತ್ತು, ಕಳಚಿ ಬಿದ್ದ ಪೈಜಣ, ನೀಲಿಮಾ ತೀರ, ಗಾಂಧಿ ಮಗಳು ಮತ್ತು ಅಚ್ಚ ಪರಿಮಳ ಮತ್ತು ಎರಡು ಸಂಪುಟಗಳಲ್ಲಿ ಸಂಗ್ರಹಿತ ಕಥಾ ಮಂಜರಿ ಅಸಂಖ್ಯ ಕನ್ನಡಿಗರ ಹೃದಯ ತಟ್ಟಿವೆ.
ನಾಡಿನ ಹಿರಿಯ ಕವಿ ನಾಡೋಜ ಚೆನ್ನವೀರ ಕಣವಿ ಯವರ ಪತ್ನಿ ಆಗಿದ್ದ ಶಾಂತಾದೇವಿ ಯವರ ಕಥೆಗಳು ಹಿಂದಿ, ತಮಿಳು, ಮಲಯಾಳಮ್, ತೆಲುಗು, ಒಡಿಯಾ, ಪಂಜಾಬಿ ಮತ್ತು ಇಂಗ್ಲೀಷು ಭಾಷೆಗಳಲ್ಲಿ ಅನುವಾದಿತವಾಗಿವೆ.
ಅವರ ಸಾಹಿತ್ಯ ಸೇವೆಗೆ ರಾಜ್ಯ ಸಾಹಿತ್ಯ ಅಕಾಡೆಮಿ ಪ್ರಶಸ್ತಿ, ಅಕಾಡೆಮಿಯ ಗೌರವ ಪ್ರಶಸ್ತಿ, ಕರ್ನಾಟಕ ಸರಕಾರದ ದಾನ ಚಿಂತಾಮಣಿ ಅತ್ತಿಮಬ್ಬೆ ಪ್ರಶಸ್ತಿ, ಕನ್ನಡ ಸಾಹಿತ್ಯ ಪರಿಷತ್ತಿನ ಬಿ ಸರೋಜಾದೇವಿ ಪ್ರಶಸ್ತಿ, ಈಟೀವಿ ಪರಿಪೂರ್ಣ ಮಹಿಳೆ ಪ್ರಶಸ್ತಿ ಇತ್ಯಾದಿಗಳೂ ಮತ್ತು ಕರ್ನಾಟಕ ರಾಜ್ಯ ಅಕ್ಕ ಮಹಾದೇವಿ ಮಹಿಳಾ ವಿಶ್ವವಿದ್ಯಾಲಯ ದಿಂದ ಗೌರವ ಡಾಕ್ಟರೇಟಿನ ಗೌರವವೂ ಸಂದಿವೆ.
ಅವರ ಸಾಹಿತ್ಯ ಕೃಷಿಯ ಬಗ್ಗೆ ಹಲವು ವಿಚಾರ ಸಂಕಿರಣಗಳೂ ಮತ್ತು ಕೃತಿಗಳೂ ಪ್ರಕಟವಾಗಿವೆ. "ಒಣಗ ಬಾರದು ಒಡಲ ಚಿಲುಮೆ" ಎಂಬ ವಿಮರ್ಶೆಯ ಕೃತಿಯಲ್ಲಿ ೫೬ ವಿಮರ್ಶಕರು ಅವರ ಕಥೆಗಳ ವಿಮರ್ಶೆಯನ್ನು ಮಾಡಿದ್ದಾರೆ. ಸಧ್ಯ ಅವರ ಸ್ಮೃತಿ ಗ್ರಂಥ "ಸಂಜೆ ಮಲ್ಲಿಗೆ" ಪ್ರಕಟವಾಗಲಿದೆ.
---------------------------------------
  ನನ್ನ ಅವ್ವ: ಸತ್ವಶಾಲಿ ಮಹಿಳೆ  
  ಕಥೆಗಾರ್ತಿ ಶಾಂತಾದೇವಿ ಕಣವಿ (ಜನೆವರಿ ೧೨, ೧೯೩೩--ಮೇ ೨೨, ೨೦೨೦) ಅವರಿಗೆ  ಪುತ್ರ ಶಿವಾನಂದ ಕಣವಿ ಯವರ ನಮನ.  

ಸಾವಿಲ್ಲದ, ಆತ್ಮವೊಂದು ಇದೆಯೋ ಇಲ್ಲವೋ ನನಗೆ ಗೊತ್ತಿಲ್ಲ. ನನ್ನ ಆತ್ಮಶೋಧವೂ ಕವಿ ವಿ ಜಿ ಭಟ್ಟ ರಂತೆ ಕಿಟ್ಟೆಲ್ ಶಬ್ದಕೋಶದ ೧೫೩ನೆಯ ಪುಟಕ್ಕಿಂತ ಮುಂದೆ ಹೋಗಿಲ್ಲ. 
ನನ್ನ ವೈಜ್ಞಾನಿಕ ಓದು ನನಗೆ ಮನಸ್ಸು, ನೆನಪುಗಳು, ಕನಸು, ಭಾವನೆ, ಬುದ್ಧಿ, ವಿವೇಕ ಗಳೆಲ್ಲ ನಮ್ಮ ಮೆದುಳಿನಲ್ಲಿ ಉಗಮಿಸುತ್ತವೆ ಆದ್ದರಿಂದ ನಮ್ಮ ಸಾವಿನ ನಂತರ ನಮ್ಮ ದೇಹದಂತೆ ಅವೂ ನಶ್ವರ ಎಂದು ಬೋಧಿಸುತ್ತದೆ. ಆದರೆ ಒಬ್ಬ ವ್ಯಕ್ತಿಯ ನೆನಪು, ಪ್ರಭಾವ ಉಳಿದವರ ಪ್ರಜ್ಞೆಯಲ್ಲಿ ಆ ವ್ಯಕ್ತಿಯ ನಂತರವೂ ಉಳಿಯುತ್ತದೆ. ಆ ಮಟ್ಟಿಗೆ ಅವರಿನ್ನೂ ನಮ್ಮೊಡನೆ, ನಮ್ಮಲ್ಲಿ ಇದ್ದಾರೆಂದು ಹೇಳಬಹುದು. ಕಣ್ಮರೆಯಾದ ವ್ಯಕ್ತಿ ಒಬ್ಬ ಸಾಹಿತಿ, ಕಲೆಗಾರ, ಚಿಂತಕರಾಗಿದ್ದಾಗ ಅವರ ಕೃತಿಗಳ ಮೂಲಕ ಇನ್ನೂ ಹೆಚ್ಚು ದಿನ, ವರುಷ, ಶತಮಾನಗಳ ವರೆಗೆ ಕೂಡ ಅನೇಕ ಪರಿಚಿತ ಮತ್ತು ಅಪರಿಚಿತ ಆಸಕ್ತರಿಗೆ "ಜೀವಂತ" ವಾಗಿರುತ್ತಾರೆ. ಇದು ನನ್ನ ತಿಳುವಳಿಕೆ.

ನನ್ನ ಅವ್ವನ ಸುಮಾರು ೬ ದಶಕಗಳ ಕನ್ನಡ ಸಾಹಿತ್ಯ ಕೃಷಿ ಬಗ್ಗೆ ಇತರರು ಬರೆದಿದ್ದಾರೆ ಮತ್ತು ಸಾವಿರಾರು ಓದುಗರು ಮೆಚ್ಚಿಕೊಂಡಿದ್ದಾರೆ. ಅವಳ ಸ್ನೇಹಮಯ ವಿಶಾಲ ಹೃದಯದ ಬಗ್ಗೆ ಅವಳ ಹತ್ತಿರ ಬಂದವರೆಲ್ಲ ಈಗ ಮುದ್ರಣವಾಗುತ್ತಿರುವ ಸ್ಮೃತಿ ಗ್ರಂಥ "ಸಂಜೆಮಲ್ಲಿಗೆ" ಯಲ್ಲಿ ( ಸಂ. ವೀಣಾ ಶಾಂತೇಶ್ವರ, ಶಾಂತಾ ಇಮ್ರಾಪುರ) ಬರೆದಿದ್ದಾರೆ. ನಾನು ಈ ಚಿಕ್ಕ ಟಿಪ್ಪಣಿಯಲ್ಲಿ ಅವಳಿಂದ ನಾನು ಏನು ಕಲಿತೆ ಮತ್ತು ಹೇಗೆ ಪ್ರಭಾವಿತನಾದೆ ಅನ್ನುವ ಬಗ್ಗೆ ಬರೆಯುತ್ತಿದ್ದೇನೆ.

ನನ್ನ ಅವ್ವನಿಗೆ ಕೆಲವು ಆಳವಾದ ನಂಬಿಕೆಗಳಿದ್ದವು ಆದರೆ ಅವಳೆಂದೂ ಕುಟುಂಬದಲ್ಲಿ ಇತರರ ಮೇಲೆ ತನ್ನ ನಂಬಿಕೆಗಳನ್ನು ಹೇರಲಿಲ್ಲ ಅಥವಾ ಭಾಷಣವನ್ನೂ ಕೊಡುತ್ತಿರಲಿಲ್ಲ. ತನ್ನ ನಡೆಯಲ್ಲಿಯೇ ಅವಳದನ್ನು ವ್ಯಕ್ತಗೊಳಿಸುತ್ತಿದ್ದಳು. ಹೀಗಾಗಿ ನನ್ನ ಮೇಲೆ ಬಾಲ್ಯದಿಂದ ಅವು ಗಾಢ ಪ್ರಭಾವವನ್ನು ಬೀರಿದವು. 

ಅವ್ವ ನಿರೀಶ್ವರವಾದಿ ಯಾಗಿರಲಿಲ್ಲ ಆದರೆ ಜೀವನದುದ್ದಕ್ಕೂ ಎಂದೂ ಅವಳು ಯಾವ ದೇವರ ಪೂಜೆಗಾಗಿಯೂ ಗುಡಿ, ದೇವಾಲಯಗಳಿಗೆ ಹೋಗಲಿಲ್ಲ. ಧಾರ್ಮಿಕ ನಂಬಿಕೆಗಳು ವೈಯಕ್ತಿಕ, ಹೊರತೋರಿಕೆಗಾಗಿ ಅಲ್ಲ ಎಂಬುದು ಅವಳ ಗಾಢ ನಂಬಿಕೆಯಾಗಿತ್ತು. ಮನೆಯ ಪೂಜಾ ಕೋಣೆಯ ಏಕಾಂತದಲ್ಲಿ ಅವಳು ಆಗಾಗ ಧ್ಯಾನ ಮಾಡುತ್ತಿದ್ದಳು. ಪೂಜೆ, ಪುನಸ್ಕಾರ, ಹೋಮ, ಹವನ ಮುಂತಾದವುಗಳನ್ನು ಅವಳು ಎಂದೂ  ಆಚರಿಸುತ್ತಿದ್ದಿಲ್ಲ. ಜ್ಯೋತಿಷ್ಯ ಮತ್ತು ಅದರೊಡನೆಯ ಗ್ರಹಣ, ರಾಹುಕಾಲ, ಮುಹೂರ್ತ, ಶಕುನ-ಅಪಶಕುನ, ಗ್ರಹ ಶಾಂತಿ ಇತ್ಯಾದಿಗಳಿಂದಂತೂ ಅವಳು ಬಹಳ ದೂರವಿದ್ದಳು. 

ಚಿಕ್ಕಂದಿನಿಂದಲೂ ಅವಳು ಚಿಕಿತ್ಸಕ, ವಾಸ್ತವವಾದಿ, ವೈಚಾರಿಕ ದೃಷ್ಟಿಕೋನವನ್ನು ಬೆಳೆಸಿಕೊಂಡಿದ್ದಳು. ಜನಸೇವೆಯಲ್ಲಿ ತೊಡಗಿರುವ ಎಲ್ಲರ ಬಗ್ಗೆಯೂ ಅವಳಿಗೆ ಗೌರವವಿತ್ತು ಆದರೆ ಧಾರ್ಮಿಕ, ನೈತಿಕ ಮಾರ್ಗದರ್ಶನಕ್ಕಾಗಿ ಅವಳೆಂದೂ ಯಾರ ಕಡೆಗೂ ಹೋಗಲಿಲ್ಲ. ಡಾಂಭಿಕ, ಪ್ರಚಾರಪ್ರಿಯರಿಂದ ಬಹು ದೂರವಿರುತ್ತಿದ್ದಳು. ಆದರೆ ಸಮಾಜದ ದಲಿತ, ಪೀಡಿತ, ಶೋಷಿತರ ಏಳ್ಗೆ, ಮತ್ತು ಹಕ್ಕುಗಳಿಗಾಗಿ ಕಾರ್ಯನಿರತರಾದವರೆಲ್ಲ ಅವಳಿಗೆ ಪ್ರಿಯ ಮತ್ತು ಆದರಣೀಯರಾಗಿದ್ದರು.

ಹಬ್ಬಗಳೆಲ್ಲ ಸಂತೋಷದಿಂದ ಕುಟುಂಬದ ಎಲ್ಲ ಸದಸ್ಯರೊಡನೆ ಹಬ್ಬದ ಊಟ ತಿಂದು ಮನೋರಂಜನೆ ಮಾಡುವದಕ್ಕಾಗಿ ಮಾತ್ರ ಅಲ್ಲದೇ ವಿಶೇಷ ಪೂಜೆ ಪುನಸ್ಕಾರಗಳಿಗಾಗಿ ಅಲ್ಲ ಎಂದು ನಡೆಯುತ್ತಿದ್ದಳು. ಮನೆಯಲ್ಲಿ ನಡೆದ ವಿವಾಹಗಳೂ ಸರಳವಾಗಿರಬೇಕು ಯಾವ ಆಡಂಬರದ ಧಾರ್ಮಿಕ ವಿಧಿಗಳಿಲ್ಲದೇ ೧೨ನೆಯ ಶತಮಾನದ ಲಿಂಗಾಯತ ಶರಣರ ಕೆಲ ವಚನಗಳನ್ನು ಉದ್ಗರಿಸಿ ಆಚರಿಸುವದು ಅವಳ ಮತ್ತು ನನ್ನ ತಂದೆಯವರ ಆಯ್ಕೆಯಾಗಿತ್ತು. ಅದೇ ವೇಳೆ ಮಕ್ಕಳು ಅಥವಾ ಸಂಬಂಧಿಗಳು ಧಾರ್ಮಿಕ ವಿಧಿಗಳನ್ನು ಆಚರಿಸಬೇಕು ಎಂದರೆ ಅವರೆಂದೂ ಅಡ್ಡ ಬರಲಿಲ್ಲ. ಒಟ್ಟಾರೆ ಸ್ವಂತ ಆಚಾರ ವಿಚಾರಗಳನ್ನು ಅಭಿವ್ಯಕ್ತಗೊಳಿಸುವಲ್ಲಿ ಎಂದೂ ಅವಳು ಹಿಂಜರಿಯಲಿಲ್ಲ ಆದರೆ ಉಳಿದವರೆಲ್ಲರೂ ಅದನ್ನೇ ಪಾಲಿಸ ಬೇಕೆಂದು ಹಠವನ್ನೂ ಹಿಡಿಯುತ್ತಿರಲಿಲ್ಲ. 

ಅವಳಿಗೆ ೧೨ನೆಯ ಶತಮಾನದ ವಚನಕಾರರು ಬಹಳ ಪ್ರಿಯರಾಗಿದ್ದರು ಏಕೆಂದರೆ ಅವರ ಅನೇಕ ವಿಚಾರಗಳು ಅವಳಿಗೆ ೨೦-೨೧ನೆಯ ಶತಮಾನಕ್ಕೂ ಸರಿ ಎನಿಸುತ್ತಿದ್ದವು. ಇತ್ತೀಚೆಗೆ ಅವಳು ಬೌದ್ಧ ವಿಚಾರಗಳನ್ನು ಆಸಕ್ತಿಯಿಂದ ಓದುತ್ತಿದ್ದಳು. ಅಂದರೆ ಅವಳು ಸ್ವಾನುಭವ, ಸ್ವಾಧ್ಯಾಯದಿಂದ ತನ್ನ ನಂಬಿಕೆ, ವೈಚಾರಿಕತೆಯನ್ನು ರೂಪುಗೊಳಿಸುತ್ತಿದ್ದಳು ಯಾವದೇ ಮತ, ಪಂಥದಿಂದಲ್ಲ.

ಅವ್ವನ ತಂದೆ, ಸಿದ್ದಬಸಪ್ಪಾ ಗಿಡ್ನವರ, ನನ್ನ ಅಜ್ಜ, ಉತ್ಕಟ ಪುಸ್ತಕ ಪ್ರಿಯರು. ಸಣ್ಣ ಊರುಗಳಲ್ಲಿ ಅವರ ಹೆಚ್ಚಿನ ನೌಕರಿಯ ದಿನಗಳನ್ನು (೧೯೨೦-೫೭ ವರೆಗೆ ) ಕಳೆದರೂ ಅವರ ಸಾಹಿತ್ಯ ಪ್ರೇಮ, ಸಾಹಿತಿಗಳ ಗೆಳೆತನ ಮತ್ತು ಅದರಂತೇ ಸಂಗೀತ ಮತ್ತು ಸಂಗೀತಕಾರರ ಪ್ರೇಮ ಪ್ರಸಿದ್ಧವಾಗಿತ್ತು. ಅವರ ಮನೆಯ ಗ್ರಂಥಾಲಯ ತನ್ನ ಗಾತ್ರ ಮತ್ತು ವೈವಿಧ್ಯತೆಯಿಂದ ಎಲ್ಲರನ್ನೂ ಬೆರಗುಗೊಳಿಸುತ್ತಿತ್ತು. ಅವರು ಲಿಂಗಾಯತ ಶರಣರಷ್ಟೇ, ಜಿದ್ದು ಕೃಷ್ಣಮೂರ್ತಿ, ವಿವೇಕಾನಂದ, ಶ್ರೀ ಅರವಿಂದರನ್ನೂ ಮೆಚ್ಚಿಕೊಂಡಿದ್ದರು. ಗ್ರಂಥಾಲಯ ವಿಪುಲವಾಗಿ ಇಂಗ್ಲೀಷು, ಕನ್ನಡ ಸಾಹಿತ್ಯಕೃತಿಗಳ ಜೊತೆಗೆ ತತ್ವಜ್ಞಾನ ಆಧ್ಯಾತ್ಮಗಳ ಭಾಂಡಾರವೂ ಆಗಿತ್ತು. ಅವರ ಗ್ರಂಥಾಲಯದಲ್ಲೇ ತನ್ಮಯಳಾಗಿ ತನ್ನ ಬಾಲ್ಯವನ್ನು ಕಳೆದಳು ನನ್ನ ಅವ್ವ. ಆದರೆ ಅವಳು ಶ್ರೀ ಅರವಿಂದರ ಅಥವಾ ಇತರ ಆಧ್ಯಾತ್ಮಿಗಳ ಅನುಯಾಯಿಯಾಗಲಿಲ್ಲ. ಅವಳು ಕೊನೆಯವರೆಗೂ ವೈಚಾರಿಕವಾಗಿ ಸ್ವತಂತ್ರ ಮತ್ತು ವಾಸ್ತವವಾದಿಯಾಗಿದ್ದಳು ಮತ್ತು ನಮ್ಮನ್ನೆಲ್ಲ ಅದೇ ದಿಕ್ಕಿನಲ್ಲಿ ತನ್ನ ಉದಾಹರಣೆಯ ಮೂಲಕ ನಡೆಸಿದಳು.

ಅವಳ ಸಾಹಿತ್ಯದ ಓದು ವಿಶಾಲವಾಗಿತ್ತು ಮತ್ತು ಕೊನೆಯ ದಿನಗಳ ವರೆಗೂ ನಡೆದಿತ್ತು. ಅವಳ ಕೊನೆ ದಿನಗಳಲ್ಲೂ ಹಾಸಿಗೆಯ ಬಳಿ ಶಾರ್ಲೆಟ್ ಬ್ರೊಂಟೀ ಯ "ಜೇನ್ ಆಯರ್" ಇತ್ತು. ಅದನ್ನವಳು ಅದೆಷ್ಟು ಬಾರಿ ಓದ್ದಿದ್ದಳೋ !

ಅವಳ ಮೆಚ್ಚಿನ ಲೇಖಕರೆಲ್ಲಾ ವಾಸ್ತವವಾದಿಗಳಾಗಿದ್ದರು. ಉದಾಹರಣೆಗೆ ಇಂಗ್ಲೀಷಿನಲ್ಲಿ ಅವಳಿಗೆ ಜೇನ್ ಆಸ್ಟಿನ್ ಅತಿ ಪ್ರಿಯ. ಅದರಂತೇ ಬ್ರೊಂಟೀ ಅಕ್ಕ-ತಂಗಿಯರು, ಚಾರ್ಲ್ಸ್ ಡಿಕನ್ಸ್, ಜಾರ್ಜ ಎಲಿಯಟ್, ವಿಕ್ಟರ್ ಹ್ಯುಗೊ, ಲಿಯೊ ಟಾಲ್ಸ್ಟೊಯ್, ಅಂಟೊನ್ ಚೆಕೋವ್, ಓ ಹೆನ್ರಿ, ಗೈ ದಿ ಮೊಪಾಸ್ಸಾ ಇತ್ಯಾದಿ. ಕನ್ನಡದ ಗದ್ಯ ಸಾಹಿತ್ಯದಲ್ಲಿ ಮಾಸ್ತಿ, ಕಾರಂತ, ಅನಕೃ, ತರಾಸು, ಕಟ್ಟೀಮನಿ, ನಿರಂಜನ, ಕುವೆಂಪು, ಭೈರಪ್ಪಾ, ಶಂಕರ ಮೊಖಾಶಿ, ಶಾಂತಿನಾಥ ದೇಸಾಯಿ, ಪೂರ್ಣಚಂದ್ರ  ತೇಜಸ್ವಿ, ಲಂಕೇಶ, ಕೊಡಗಿನ ಗೌರಮ್ಮ, ವಾಣಿ, ತ್ರಿವೇಣಿ, ಅನುಪಮಾ, ವೈದೇಹಿ ಮತ್ತೆ ಅನೇಕರು.  ಅವಳು ಸ್ವಭಾವತಃ ವಾಸ್ತವವಾದಿ ಆದ್ದರಿಂದಲೇ ಉಳಿದ ಕನ್ನಡದ ಮತ್ತು ಯುರೋಪಿನ ವಾಸ್ತವವಾದಿಗಳು ಅವಳಿಗೆ ಪ್ರಿಯರಾಗಿದ್ದರು.

ಸ ಸ ಮಾಳವಾಡರ ಮನೆಯಲ್ಲಿ ಇತ್ತೀಚೆಗೆ ದೊರೆತ ಒಂದು ಹಸ್ತಪ್ರತಿಯನ್ನು ನೋಡಿದರೆ ೧೯೪೪ರಲ್ಲಿ (೧೧ ವರುಷದವಳಿದ್ದಾಗ ) ಅವಳು ಬರೆದ ಒಂದು ಕಥೆಯಿಂದ  ಅವಳ ಬರಹ ಪ್ರಾರಂಭವಾಯಿತೆನ್ನಬಹುದು. ಆದರೆ ಪ್ರಕಟ ವಾಗಿ ಪ್ರಸಿಸ್ದ್ಧಿ ಪಡೆದ ಕಥೆ ೧೯೫೮ರ ನಡೆದು ಬಂದ ದಾರಿ, ಕೀರ್ತಿನಾಥ ಕುರ್ತುಕೋಟಿ ಸಂಪಾದಿಸಿದ ಸಾಹಿತ್ಯ ಸಂಗ್ರಹದಲ್ಲಿ. ನಾವೆಲ್ಲಾ ೫ ಜನ ಮಕ್ಕಳು ಚಿಕ್ಕವರಾಗಿದ್ದಾಗಲೂ ಅಡಿಗೆ ಮನೆ, ಮಲಗುವ ಮನೆ, ಡೈನಿಂಗ ರೂಮು ಎಲ್ಲ ಅವಳ ಓದು ಬರಹದ ಕೋಣೆಗಳಾಗಿದ್ದವು. ೬೦ರ ದಶಕದಿಂದ ಸುಧಾ, ಕಸ್ತೂರಿ, ತರಂಗ, ಮಯೂರ, ವಿವಿಧ ದೀಪಾವಳಿ ವಿಶೇಷಾಂಕಗಳು ಅವಳ ಸಣ್ಣ ಕಥೆಗಳನ್ನು ಬೇಡಿ ಪ್ರಕಟಗೊಳಿಸಿದವು. ಆಕಾಶವಾಣಿ ಅವಳ ಕಥೆಗಳನ್ನಷ್ಟೇ ಅಲ್ಲ ಸುಮಾರು ೬೦ಕ್ಕೂ ಮೀರಿ ರೇಡಿಯೋ ನಾಟಕಗಳನ್ನೂ, ಮಕ್ಕಳು ಮತ್ತು ಮಹಿಳೆಯರಿಗಾಗಿ ಅನೇಕ ಹರಟೆ, ಭಾಷಣಗಳನ್ನೂ ಪ್ರಸಾರ ಮಾಡಿತು. ಎಂಟು ಕಥಾ ಸಂಗ್ರಹ ಗಳೂ ಮತ್ತವಳ ಕಥೆಗಳ ವಿಮರ್ಶಾ ಗ್ರಂಥಗಳೂ ಪ್ರಕಟವಾದವು ಮತ್ತನೇಕ ಗೌರವ, ಪ್ರಶಸ್ತಿಗಳೂ ದೊರಕಿದವು. ಅದರೆ ಅದೆಲ್ಲ ಅವಳು ಅಕ್ಕ ಮಹಾದೇವಿಯೆಂದಂತೆ "ಸಂತೆಯೊಳಗೊಂದು ಮನೆಯ ಮಾಡಿ ಶಬ್ದಕ್ಕೆ ನಾಚದೆಯೇ" ಸಾಧಿಸಿದಳು.

ಅಡುಗೆ ಮನೆಯ ಜವಾಬ್ದಾರಿಯನ್ನು ಚಿಕ್ಕ ಸೊಸೆ ಮಂಜುಳಾಗೆ ವಹಿಸಿದ ನಂತರ ಅವಳು ಯಾವಾಗಲೂ ದೂರ ದರ್ಶಕದ ಮುಂದೆ ಪುಸ್ತಕ ಹಿಡಿದುಕೊಂಡೇ ಎಲ್ಲರಿಗೂ ಕಾಣಿಸುತ್ತಿದ್ದಳು.

ತಾಯಿಯಾಗಿ ಅವಳು ನಾವು ಚಿಕ್ಕವರಿದ್ದಾಗ ನಮ್ಮನ್ನು ಸಹಜವಾಗಿ ಪ್ರೀತಿ ಮತ್ತು ಅನುಶಾಸನ ಮಿಶ್ರಿಸಿ ಬೆಳೆಸಿದಳು ಆದರೆ ಸ್ವಲ್ಪ ಪ್ರಜ್ಞಾವಂತರಾದಂತೆಯೇ ಕುಟುಂಬದ ವಿಷಯಗಳಲ್ಲಿ ಪಾರದರ್ದಶಿಯೂ ಮತ್ತು ವೈಚಾರಿಕವಾಗಿ ಉದಾರಮತವಾದಿಯೂ ಆಗಿದ್ದಳು. ನಾವು ಬೆಳೆದಂತೆ ನಮಗೆ ವೈಚಾರಿಕ ಸ್ವಾತಂತ್ರ್ಯ ನಮ್ಮ ನಮ್ಮ ಜೀವನ ಸಂಗಾತಿಗಳು, ಅಭಿರುಚಿಗಳು, ಹವ್ಯಾಸಗಳು,ಶೈಕ್ಷಣಿಕ ಮತ್ತು ವ್ಯವಹಾರಿಕ ರಂಗಗಳಲ್ಲಿ ಜವಾಬ್ದಾರಿಯುತ ಸ್ವಾತಂತ್ರ್ಯ ಪೂರ್ತಿಯಾಗಿ ನಮ್ಮ ತಂದೆ-ತಾಯಿ ಕೊಟ್ಟಿದ್ದರು. ಈಗ ಎಷ್ಟೋ ಬಾರಿ ನಾವು ನಮ್ಮ ಮಕ್ಕಳ ಜೊತೆಗೆ ಹಾಗಿದ್ದೀವಾ ಎಂದು ಅನೇಕ ಬಾರಿ ನನಗೆ ಪ್ರಶ್ನೆಯೇಳುತ್ತದೆ. ನನ್ನ ಮಟ್ಟಿಗೆ ಅವಳ ಪಾಲನೆಯ ಶೈಲಿ ನಮಗೆ ಆದರ್ಶವಾಗಿದೆ.

ಅವಳ ನಂಬಿಕೆಗಳು ಗಾಢವಾಗಿದ್ದವು ಆದರೂ ಎಂದೂ ಸ್ಥಾವರವಾಗಿದ್ದಿಲ್ಲ. ಹೊಸ ವಿಚಾರ ಅಥವಾ ಚಿಂತನೆಯ ಕ್ರಮಕ್ಕೆ ಸರಳವಾಗಿ ತನ್ನನು ತಾನು ತೆರೆದುಕೊಂಡಿದ್ದಳು. ಸುತ್ತೆಲ್ಲ ವೈಚಾರಿಕ ಸ್ಥಾವರತೆಯೇ ತುಂಬಿದಾಗ ಇದೊಂದು ಅಪರೂಪ ಗುಣವಾಗಿಲ್ಲವೇ? ನನ್ನ ತಂದೆಯ ದೃಷ್ಟಿಕೋಣ ಸಮಷ್ಟಿಯದು, ಸಮತೋಲ- ಸಮನ್ವಯತೆಯದು. ತಮ್ಮ ಅನುಭವ, ಕಾವ್ಯ ದರ್ಶನದ ಜೊತೆಗೆ ರಾಜಕೀಯ, ಸಾಮಾಜಿಕ ಅನಿಸಿಕೆಗಳನ್ನೂ ತಮ್ಮ ಕವಿತೆಗಳ ಮೂಲಕ ಅವರು ಸುಮಾರು ಏಳು ದಶಕಕ್ಕೂ ಹೆಚ್ಚು ಕಾಲ ವ್ಯಕ್ತಗೊಳಿಸಿದ್ದಾರೆ. ವಿರಳವಾದ ಸಂದರ್ಭಗಳಲ್ಲಿ ಅವರು ಸಾರ್ವಜನಿಕವಾಗಿ ಬೀದಿಗಿಳಿದೂ ತಮ್ಮ ವಿರೋಧವನ್ನು ಪ್ರದರ್ಶಿಸಿದ್ದಾರೆ. ೧೯೭೫-೭೭ರ ತುರ್ತು ಪರಿಸ್ಥಿತಿ, ೧೯೮೧-೮೨ರ ಕನ್ನಡ ಪ್ರಾಧಾನ್ಯತೆಗಾಗಿ ಗೋಕಾಕ ಚಳುವಳಿ, ಪ್ರಾ ಮ ಮ ಕಲಬುರ್ಗಿಯವರ ಹೃದಯ ವಿದ್ರಾವಕ ಹತ್ಯೆ, ಇತ್ತೀಚಿನ ಕೋಮುವಾದ ಮತ್ತು ನಾಗರಿಕತೆ ಸಂಬಂಧಿತ ವಿವಾದಗಳು ಇದಕ್ಕೆ ಕೆಲವು ಉದಾಹರಣೆಗಳು. ಆಗೆಲ್ಲ ನನ್ನ ಅವ್ವ ಅವರ ಬೆನ್ನ ಹಿಂದಿನ ಸ್ಥಿರ ಸಂಗಾತಿಯಾಗಿದ್ದಳು.

ಸ್ವತಃ ಅವಳು ಸಾರ್ವಜನಿಕ ಸಭೆ ಸಮಾರಂಭಗಳಲ್ಲಿ ಶ್ರೋತೃವಾಗಿದ್ದಳೇ ಹೊರತು ಮಂಚವೇರಿ ಭಾಷಣ ಬೀರಲು ಹಿಂಜರಿದಳು. ಆಡಂಬರ, ಪ್ರಚಾರ ಪಿಪಾಸೆ, ತನ್ನ ಸಾಧನೆಯ ಬಗ್ಗೆ ಗರ್ವ ಇತ್ಯಾದಿ ಅವಳ ಹತ್ತಿರವೆಂದೂ ಸುಳಿಯಲಿಲ್ಲ.

ಇಂಥ ತಾಯಿಯಿಂದ ಪ್ರಭಾವಿತರಾಗದೇ ಇರಲು ನಮಗೆಲ್ಲ ಹೇಗೆ ಸಾಧ್ಯ. ನಮ್ಮೊಳಗೆ ಅವಳಿಂದೂ ಜೀವಿಸಿದ್ದಾಳೆ ಎಂದು ನನಗನಿಸುತ್ತದೆ.

Tuesday, May 18, 2021

Lasers - The benign third eye

 

Lasers: The benign third eye

Shivanand Kanavi


On May 16, 1960 Maiman demonstrated the Ruby Laser. Here is an excerpt from my book "Sand to Silicon: The amazing story of digital technology" on Lasers, their basic science and everyday applications outside of James Bond's Goldfinger and George Lukas' Starwars !



ಸಮಸ್ತ ಕತ್ತಲೆಯ ಮಸಕವ ಕಳೆದಿಪ್ಪ ಇರವ ನೋಡಾ !

ಬೆಳಗಿಗೆ ಬೆಳಗು ಸಿಂಹಾಸನವಾಗಿ,

ಬೆಳಗು ಬೆಳಗ ಕೂಡಿದ ಕೂಟವ

ಕೂಡಲಸಂಗಯ್ಯ ತಾನೆ ಬಲ್ಲ !

--ಬಸವಣ್ಣ, 12th C

“A splendid light has dawned on me about the absorption and emission of radiation.”

—ALBERT EINSTEIN, in a letter to Michael Angelo Besso, November 1916


C K N Patel in his lab in Los Angeles (2002)

Photo: Palashranjan Bhaumick

In popular perception, lasers are still identified with their destructive potential—the apocalyptic ‘third eye’ of Shiva. It was no coincidence that the most powerful neodymium glass laser built for developing nuclear weapon technology at the Lawrence Livermore Laboratory in the US (back in 1978) was named Shiva.

Villains used lasers in the 1960s to cut the vaults of Fort Knox in the James Bond movie, Goldfinger. In 1977 Luke Skywalker and Darth Vader had their deadly duels with laser swords in the first episode of Star Wars. As if to prove that life imitates art, Ronald Reagan poured millions of dollars in the 1980s, in a ‘ray gun’, a la comic-strip super-hero stories, with the aim of building the capability to shoot down Soviet nuclear missiles and satellites.

In our real, daily lives, lasers have crept in without much fanfare:

• All sorts of consumer appliances, including audio and video CD players and DVD players use lasers.

• Multimedia PCs are equipped with a CD-ROM drive which uses a laser device to read or write.

• Light emitting diodes (LED)—country cousins of semiconductor lasers—light up digital displays and help connect office computers into local area networks.

• LED-powered pointers have become popular in their use with audiovisual presentations.

• Who can forget the laser printer that has revolutionised publishing and brought desk top publishing to small towns in India?

• Laser range finders and auto-focus in ordinary cameras have made ‘expert photographers’ of us all.

• The ubiquitous TV remote control is a product of infrared light emitting diodes.

• The bar code reader, used by millions of sales clerks and storekeepers, and in banks and post offices, is one of the earliest applications of lasers.

• Almost all overseas telephone calls and a large number of domestic calls whiz through glass fibres at the speed of light, thanks to laser-powered communications.

• The Internet backbone, carrying terabits (tera = a million million) of data, uses laser-driven optical networks.

C.K.N. Patel won the prestigious National Medal of Science in the US in 1996 for his invention of the carbon dioxide laser, the first laser with high-power applications, way back in 1964 at Bell Labs. He says, “Modern automobiles have thousands of welds, which are made by robots wielding lasers. Laser welds make the automobile safer and lighter by almost a quintal. Even fabrics in textile mills and garment factories are now cut with lasers.”

Narinder Singh Kapany, the inventor of fibre optics, was also the first to introduce lasers for eye surgery. He did this in the 1960s along with doctors at Stanford University. Today’s eye surgeons are armed with excimer laser scalpels that can make incisions less than a micron (thousandth of a millimetre) wide, on the delicate tissues of the cornea and retina.

LASER BASICS

So what are lasers, really? They produce light that has only one wavelength and a high directionality and is coherent. What do these things mean, and why are they important? Any source of light, man-made or natural, gives out radiation that is a mixture of wavelengths—be it a kerosene lantern, a wax candle, an electric bulb or the sun. Different wavelengths of light correspond to different colours.

When atoms fly around in a gas or vibrate in a solid in random directions, the light (photons) emitted by them does not have any preferred direction; the photons fly off in a wide angle. We try to overcome the lack of direction by using a reflector that can narrow the beam, as from torchlight, to get a strong directional beam. However, the best of searchlights used, say, outside a circus tent or during an air raid, get diffused at a distance of a couple of miles.

The intensity of a spreading source at a distance of a metre is a hundred times weaker than that at ten centimetres and a hundred million times weaker at a distance of one kilometre. Since there are physical limits to increasing the strength of the source, not to mention the prohibitive cost, we need a highly directional beam. Directionality becomes imperative for long-distance communications over thousands of kilometres..

Why do we need a single wavelength? When we are looking for artificial lighting, we don’t. We use fluorescent lamps (tube lights), brightly coloured neon signs in advertisements or street lamps filled with mercury or sodium. All of them produce a wide spectrum of light. But a single wavelength source literally provides a vehicle for communications. This is not very different from the commuter trains we use en masse for efficient and high-speed transportation. Understandably, telecom engineers call them ‘carrier waves’. In the case of radio or TV transmission, we use electronic circuits that oscillate at a fixed frequency. Audio or video signals are superimposed on these carrier channels, which then get a commuter ride to the consumer’s receiving set.

With electromagnetic communications, the higher the frequency of the carrier wave, the greater the amount of information that can be sent piggyback on it. Since the frequency of light is million times greater than that of microwaves, why not use it as a vehicle to carry our communications? It was this question that led to optical communications, where lasers provide the sources of carrier waves, electronics enables your telephone call or Internet data to ride piggyback on it, and thinner-than hair glass fibres transport the signal underground and under oceans.

We have to find ways to discipline an unruly crowd of excited atoms and persuade them to emit their photons in some order so that we obtain monochromatic, directional and coherent radiation. Lasers are able to do just that.

Why coherence? When we say a person is coherent in his expression, we mean that the different parts of his communication, oral or written, are connected logically, and hence make sense. Randomness, on the other hand, cannot communicate anything. It produces gibberish.

If we wish to use radiation for communications, we cannot do without coherence. In radio and other communications this was not a problem since the oscillator produced coherent radiation. But making billions of atoms radiate in phase necessarily requires building a new kind of source. That is precisely what lasers are.

Like many other ideas in modern physics, lasers germinated from a paper by Albert Einstein in 1917. He postulated that matter could absorb energy in discrete quanta if the size of the quantum is equal to the difference between a lower energy level and a higher energy level. The excited atoms, he noted, can come down to the lower energy state by emitting a photon of light spontaneously.

On purely theoretical considerations, Einstein made a creative leap by contending that the presence of radiation creates an alternative way of de-excitation, called stimulated emission. In the presence of a photon of the right frequency, an excited atom is induced to emit a photon of the exact same characteristics. Such a phenomenon had not yet been seen in nature.

Stimulated emission is like the herd effect. For example, a student may be in two minds about skipping a boring lecture, but if he bumps into a couple of friends who are also cutting classes, then he is more likely to join the gang.

A most pleasant outcome of this herd behaviour is that the emitted photon has the same wavelength, direction and phase as the incident photon. Now these two photons can gather another one if they encounter an excited atom. We can thus have a whole bunch of photons with the same wavelength, direction, and phase. There is one problem, though; de-excited atoms may absorb the emitted photon, and hence there may not be enough coherent photons coming out of the system.

What if the coherent photons are made to hang around excited atoms long enough without exiting the system in a hurry? That will lead to the same photon stimulating more excited atoms. But how do you make photons hang around? You cannot slow them down. Unlike material particles like electrons, which can be slowed down or brought to rest, photons will always zip around with the same velocity (of light of course!)—300,000 km per second.

THE BARBERSHOP SOLUTION

Remember the barber’s shop, with mirrors on opposite walls showing you a large number of reflections? Theoretically, you could have an infinite number of reflections, as if light had been trapped between parallel facing mirrors. Similarly, if we place two highly polished mirrors at the two ends of our atomic oscillator, coherent photons will reflected back and forth, and we will get a sustainable laser action despite the usual absorptive processes.

At the atomic level, of course, we need to go further than the barber’s shop. We need to adjust the mirrors minutely so that we can achieve resonance, i.e., when the incident and reflected photons match one another in phase, and standing waves are formed. Lo and behold, we have created a light amplification by stimulated emission of radiation (laser).

In the midst of disorderly behaviour we can see order being created by a laser. Physics discovered that the universe decays spontaneously into greater and greater disorder. If you are a stickler, ‘the entropy—measure of disorder—of an isolated system can only increase’. This is the second law of thermodynamics. So are we violating this law? Are we finally breaking out of thermodynamic tyranny?

It should be noted, however, that the universe becomes interesting due to the creation of order. Evolution of life and its continuous reproduction is one of the greatest acts of creating order. However, rigorous analysis shows that even when order is created in one part of the universe, on the whole, disorder increases. Lasers are humanity’s invention of an order-creating system.

Charles Townes, a consultant at Bell Labs, first created microwave amplification through stimulated emission in 1953. He called the apparatus a maser. Later work by Townes and Arthur Schawlow at Bell Labs, and Nikolay Basov and Aleksandr Prokharov in the Soviet Union led to the further development of laser physics. Townes, Basov and Prokharov were awarded the Nobel Prize for their work in 1964. Meanwhile, in 1960, Theodore Maiman, working at the Hughes Research Laboratory, had produced the first such instrument for visible light—hence the first laser—using a ruby crystal.

Since then many lasing systems have been created. At Bell Labs C K N Patel did outstanding work in gas lasers and developed the carbon dioxide laser in 1964. This was the first high power continuous laser and since then it has been perfected for high power applications in manufacturing.

THE SEMICONDUCTOR REVOLUTION IN LASERS

What made lasers become hi-tech mass products was the invention of semiconductor lasers in 1962 by researchers at General Electric, IBM, and the MIT Lincoln Laboratory. These researchers found that diode devices based on the semiconductor gallium arsenide convert electrical energy into light. They were highly efficient in their amplification, miniature in size and eventually inexpensive. These characteristics led to their immediate application in communications, data storage and other fields.

Today, the performance of semiconductor lasers has been greatly enhanced by using sandwiches of different semiconductor materials. Such ‘hetero-junction’ lasers can operate even at room temperature, whereas the older semiconductor lasers needed cooling by liquid nitrogen (to around -77 0C). Herbert Kroemer and Zhores Alferov were awarded the Nobel Prize in physics in 2000 for their pioneering work in hetero-structures in semiconductors. Today, various alloys of gallium, arsenic, indium, phosphorus and aluminium are used to obtain the best LEDs and lasers.

One of the hottest areas in semiconductor lasers is quantum well lasers, or cascade lasers. This area came into prominence with the development of techniques of growing semiconductors layer by layer using molecular beam epitaxy. Researchers use this technique to work like atomic bricklayers. They build a laser by placing a layer of a semiconductor with a particular structure and then placing another on top with a little bit of cementing material in between. By accurately controlling the thickness of these layers and their composition, researchers can adjust the band gaps in different areas. This technique is known as ‘band gap engineering’.

If the sandwich is thin enough, it acts as a quantum well for electrons. The electrons confined in this way lead to quantum systems called quantum wells (also known as particle in a box). The gap in the energy levels in such quantum wells can be controlled minutely and used for constructing a laser. Further, by constructing a massive club sandwich, as it were, we can have several quantum wells next to each other. The electron can make a stimulated emission of a photon by jumping to a lower level in the neighbouring well and then the next one and so on. This leads to a cascade effect like a marble dropping down a staircase. The system ends up emitting several photons of different wavelengths, corresponding to the quantum energy staircase. Frederico Capasso and his team built the first such quantum cascade laser at Bell Labs in 1994.

Once a device can be made from semiconductors, it becomes possible to miniaturise them while raising performance levels and reducing their price. That’s the pathway to mass production and use. This has happened in the case of lasers too.

We can leave the physics of lasers at this point and see how lasers are used in appliances of daily use: A bar-code reader uses a tiny helium-neon laser to scan the code. A detector built into the reader detects reflected light and the white-and black bars are then converted to a digital code that identifies the object.

A laser printer uses static electricity; that’s what makes your polyester shirt or acrylic sweater crackle sometimes. The drum assembly inside the laser printer is made of material that conducts when exposed to light. Initially, the rotating drum is given a positive charge. A tiny movable mirror reflects a laser beam on to the drum surface, thereby rendering certain points on the drum electrically neutral. A chip controls the movement of the mirror. The laser ‘draws’ the letters and images to be printed as an electrostatic image.

After the image is set, the drum is coated with positively charged toner (a fine, black powder). Since it has a positive charge, the toner clings to the discharged areas of the drum, but not to the positively charged ‘background’. The drum, with this powder pattern, rolls over a moving sheet of paper that has already been given a negative charge stronger than the negative charge of the image. The paper attracts the toner powder. Since it is moving at the same speed as the drum, the paper picks up the image exactly. To keep the paper from clinging to the drum, it is electrically discharged after picking up the toner. Finally, the printer passes the paper through a pair of heated rollers. As the paper passes through these rollers, the toner powder melts, fusing with the paper, which is why pages are always warm when they emerge from a laser printer.

Compact discs are modern avatars of the old vinyl long-playing records. Sound would be imprinted on the LPs by a needle as pits and bumps. When the needle in the turntable head went over the track, it moved in consonance with these indentations. The resultant vibrations were amplified mechanically to reproduce the sound we heard as music. Modern-day CDs and DVDs are digital versions of the old Edison’s phonograph. Sound or data is digitised and encoded in tiny black or white spots corresponding to ones and zeros. These spots are then embedded in tiny bumps that are 0.5 microns wide, 0.83 microns long and 0.125 micron high. The bumps are laid out in a spiral track much as in the vinyl record. A laser operating at a 0.780-micron wavelength lights up these spots and the reflected signal is then read by a detector as a series of ones and zeroes, which are translated into sound.

In the case of DVDs, or digital versatile discs, the laser operates at an even smaller wavelength, and is able to read much smaller bumps. This allows us to increase the density of these bumps in the track on a DVD with more advanced compression and coding techniques. This means we can store much more information on a DVD than we can on a CD. A DVD can store several GB of information compared with the 800 MB of data a CD can store.

A CD is made from a substratum of polycarbonate imprinted with microscopic pits and coated with aluminium, which is then protected by a thin layer of acrylic. The incredibly small dimensions of the bumps make the spiral track on a CD almost five kilometres long! On DVDs, the track is almost twelve kilometres long.

To read something this small you need an incredibly precise discreading mechanism. The laser reader in the CD or DVD player, which has to find and read the data stored as bumps, is an exceptionally precise device.

The fundamental job of the player is to focus the laser on the track of bumps. The laser beam passes through the polycarbonate layer, reflects off the aluminium layer, and hits an opto-electronic device that detects changes in light. The bumps reflect light differently than the rest of the aluminium layer, and the opto-electronic detector senses the change in reflectivity. The electronics in the drive interpret the changes in reflectivity in order to read the bits that make up the bytes. These are then processed as audio or video signals.

With the turntables of yesterday’s audio technology, the vibrating needles would suffer wear and tear. Lasers neither wear themselves out nor scratch the CDs, and they are a thousand times smaller than the thinnest needle. That is the secret of high-quality reproduction and the high quantity of content that can be compressed into an optical disc.

C.K.N. Patel recalls how, in the 1960s, the US defence department was the organisation that evinced the greatest interest in his carbon dioxide laser. “The launch of the Sputnik by the Soviet Union created virtual panic,” he says. “That was excellent, since any R&D project which

the military thought remotely applicable to defence got generously funded.” ‘Peacenik’ Patel, who is passionate about nuclear disarmament, is happy to see that the apocalyptic ‘Third Eye’ has found peaceful applications in manufacturing and IT. Patel refuses to retire and is busy,

in southern California, trying to find more applications of lasers for health and pollution problems.

----------------------------------------------------

Friday, April 30, 2021

Roddam Narasimha Interview on Climate, Clouds etc Kannada

(This Kannada version of my original interview was translated by Amar Holegadde and published in Matukate 137 by Ninasam, Heggodu)

ತಾಪಮಾನ, ಮೋಡ, ಮಳೆ ಇತ್ಯಾದಿ: ರೊದ್ದಂ ನರಸಿಂಹ ಸಂದರ್ಶನ

ಸಂದರ್ಶಕ: ಶಿವಾನಂದ ಕಣವಿ,

ಕನ್ನಡಕ್ಕೆ: ಅಮರ ಹೊಳೆಗದ್ದೆ



(ಪ್ರೊ. ರೊದ್ದಂ ನರಸಿಂಹ (1933-2020) ಅವರು ನಮ್ಮ ನಾಡಿನ ಹೆಸರಾಂತ ವೈಮಾಂತರಿಕ್ಷ ವಿಜ್ಞಾನಿ. ಅಂತರಾಷ್ಟ್ರೀಯ ಮಟ್ಟದ ವಿಶ್ವವಿದ್ಯಾಲಯ ಮತ್ತು ಅಧ್ಯಯನ ಕೇಂದ್ರಗಳಲ್ಲಿ ಸುಪ್ರಸಿದ್ಧರಾಗಿದ್ದವರು. ದ್ರವಚಲನ ಶಾಸ್ತ್ರ ಮತ್ತು ವಿಮಾನ ನಿರ್ಮಾಣ ಶಾಸ್ತ್ರಗಳಲ್ಲಿ ವಿಶೇಷ ಪರಿಣತರು. ವಿಜ್ಞಾನ, ತತ್ವಶಾಸ್ತ್ರ ಮತ್ತು ಸಂಸ್ಕೃತಿಗಳ ಸಂಬಂಧ ಕುರಿತೂ ಅಪರೂಪದ ಬರಹಗಳನ್ನು ಇವರು ಬರೆದಿದ್ದು, ಅಂಥ ಒಂದು ಪುಸ್ತಕವು ಕನ್ನಡದಲ್ಲೂ ಪ್ರಕಟಗೊಂಡಿದೆ (ವಿಜ್ಞಾನ-ಸಂಸ್ಕೃತಿ, ಅಕ್ಷರ ಪ್ರಕಾಶನ). ಬೆಂಗಳೂರಿನ ಜವಾಹರಲಾಲ್ ನೆಹರು ಉನ್ನತ ವೈಜ್ಞಾನಿಕ ಸಂಶೋಧನ ಕೇಂದ್ರದಲ್ಲಿ ತೊಡಗಿಸಿಕೊಂಡಿದ್ದ ಇವರು ಈಚಿನ ವರ್ಷಗಳಲ್ಲಿ ಮೋಡಗಳ ವಿಕಾಸ ಮತ್ತು ಚಲನೆಯ ಕುರಿತು ವಿಶೇಷ ಸಂಶೋಧನೆಯನ್ನು ನಡೆಸುತ್ತಿದ್ದರು. ಪ್ರಸ್ತುತ ಸಂದರ್ಶನ ಈ ವಿಚಾರ ಕುರಿತದ್ದು. ಈ ವಿಷಯದಲ್ಲಿನ ಅಧ್ಯಯನವು, ಭಾರತದ ಮುಂಗಾರು ಹಾಗು ಜಗತ್ತಿನ ಹವಾಮಾನ ಬದಲಾವಣೆಯನ್ನು ಅರಿಯಲು ತುಂಬ ಸಹಕಾರಿಯಾಗಿದೆ. ಸಂದರ್ಶಕರಾದ ಶಿವಾನಂದ ಕಣವಿ ಅವರು ಟಿಸಿಎಸ್‍ನ ಮಾಜಿ ಉಪಾಧ್ಯಕ್ಷರು, ಬೆಂಗಳೂರಿನ ನ್ಯಾಷನಲ್ ಇನ್ಸ್ಟಿಟ್ಯೂಟ್ ಆಫ್ ಅಡ್ವಾನ್ಸ್‍ಡ್ ಸ್ಟಡೀಸ್‍ನಲ್ಲಿ ಬೋಧಕರು. ಈ ಬರಹದ ಅನುವಾದಕ ಅಮರ ಹೊಳೆಗದ್ದೆ ಪ್ರಸ್ತುತ ತುಮಕೂರು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದಲ್ಲಿ ಕನ್ನಡ ಎಂ.ಎ. ಓದುತ್ತಿದ್ದಾರೆ.)

 

ಶಿವಾನಂದ ಕಣವಿ: ಮೋಡಗಳ ಅಧ್ಯಯನದೆಡೆಗೆ ನೀವು ಆಕರ್ಷಿತರಾಗಲು ಕಾರಣವೇನು? ಈ ಅಧ್ಯಯನದಿಂದ ಇನ್ನೂ ಬಗೆಹರಿಯದೇ ಇರುವ ವಿಷಯಗಳು ಯಾವುವು?

ರೊದ್ದಂ ನರಸಿಂಹ: ಮೋಡಗಳ ಚಲನವಲನವು, ಇಂದು ಪ್ರಧಾನವಾಗಿರುವ ಎರಡು ವಿದ್ಯಮಾನಗಳ ಕೇಂದ್ರವಾಗಿದೆ. ಮೊದಲನೆಯದ್ದು, ಹವಾಮಾನ ಬದಲಾವಣೆ. ಈ ಹವಾಮಾನ ಬದಲಾವಣೆಯನ್ನು ಮುಂಗಾಣುವಲ್ಲಿ ಅತಿದೊಡ್ಡ ಅನಿರ್ದಿಷ್ಟತೆ ಎದುರಾಗುವುದೇ ಮೋಡಗಳ ವಿಚಾರದಲ್ಲಿ. ನೋಡಿ, ಹಸಿರುಮನೆ ಅನಿಲಗಳು ಹಾಗು ಇನ್ನಿತರ ಪದಾರ್ಥಗಳಿಂದಾಗಿ ವಾಯುಮಂಡಲದಲ್ಲುಂಟಾಗುವ ಬದಲಾವಣೆಗಳ ಕುರಿತು ಸಂಶೋಧಕರ ಅನೇಕ ಗುಂಪುಗಳು ವಿಶ್ವಾದ್ಯಂತ ಅಧ್ಯಯನ ನಡೆಸಿವೆ. ಆದರೆ, ಅವು ನುಡಿಯುವ ಭವಿಷ್ಯಕ್ಕೆ ಹೊಂದಿಕೆಯಾಗದ ಸಂಗತಿಗಳೂ ಆಗೊಮ್ಮೆ ಈಗೊಮ್ಮೆ ಕಾಣ ಸಿಕೊಂಡಿವೆ. ಕಳೆದ ಹತ್ತು ವರ್ಷಗಳು ಇದಕ್ಕೆ ಉತ್ತಮ ಉದಾಹರಣೆ. ಈ ಕಾರಣದಿಂದಾಗಿ, ‘ಅವೆಲ್ಲಾ ಉಪಯೋಗಕ್ಕೆ ಬಾರದ ಮಾದರಿಗಳು. ಅವನ್ನು ಬಳಸಿಕೊಂಡು ನೀವೆಲ್ಲ ಬರಿದೇ ದಿಗಿಲೆಬ್ಬಿಸುವ ಹೇಳಿಕೆಗಳನ್ನು ನೀಡುತ್ತಿದ್ದೀರ. ಕಳೆದ 10 ವರ್ಷಗಳಲ್ಲಿ ಭೂಮಿಯ ಕಾವು ಏಕೆ ಏರಿಲ್ಲ ಎನ್ನುವುದನ್ನು ನಿಮ್ಮಿಂದ ವಿವರಿಸಲಾಗಿಲ್ಲ ಎಂದಮೇಲೆ, ನಿಮ್ಮ ಯಾವ ಮಾತುಗಳನ್ನು ನಂಬುವುದಾದರೂ ಹೇಗೆ?’ ಎಂದು ಪ್ರಶ್ನೆಮಾಡುವ ಸಂಶಯವಾದಿಗಳು ಇದ್ದೇ ಇರುತ್ತಾರೆ.

ಕಣವಿ: ಮೈಕಲ್ ಕ್ರೈಡನ್ ಎನ್ನುವವರು ಒಂದು ಕಾದಂಬರಿ ಬರೆದಿದ್ದಾರೆ (ಸ್ಟೇಟ್ ಆಫ್ ಫಿಯರ್, 2004 - ಅನುವಾದಕ). ಇದರ ಅರ್ಧಭಾಗದಷ್ಟು ಅವರು, ಹವಾಮಾನ ಬದಲಾವಣೆ ಎಂಬ ವಿಚಾರವನ್ನೇ ಕಟುವಾಗಿ ಟೀಕಿಸಿದ್ದಾರೆ. ಓದಿದ್ದೀರಾ? ಕುತೂಹಲಕಾರಿಯಾಗಿದೆ.

ರೊದ್ದಂ: ಹೌದು, ಸಾಕಷ್ಟು ಕುತೂಹಲ ಹುಟ್ಟಿಸತ್ತೆ ಅದು. ನಿಜ ಹೇಳಬೇಕು ಅಂದರೆ, ಕೆಲವು ಭೌತವಿಜ್ಞಾನಿಗಳು ಸಂಶಯವಾದಿಗಳೂ ಆಗಿದ್ದಾರೆ. ವಾಯುಮಂಡಲ ವಿಜ್ಞಾನ ವಲಯದಲ್ಲಿ ಒಂದು ಧೋರಣೆ ಸಾಮಾನ್ಯವಾಗಿ ಚಾಲ್ತಿಯಲ್ಲಿದೆ. ಅದು ಹೀಗಿದೆ - ‘ಕ್ಷಣ ಕ ವ್ಯತ್ಯಯಗಳು/ ಏರಿಳಿತಗಳು ಆಗಾಗ ಉಂಟಾಗುತ್ತವೆ ಎನ್ನುವುದೇನೋ ನಿಜ. ಆ ಎಲ್ಲಾ ವ್ಯತ್ಯಯಗಳನ್ನು ಮುಂಗಾಣಬಲ್ಲೆವು ಎಂದೇನು ನಾವು ವಾದಿಸುತ್ತ ಇಲ್ಲ. ಆದರೆ, ಒಂದು ವ್ಯತ್ಯಯ ಉಂಟಾದ ಬಳಿಕ, ಏನು ನಡೆಯುತ್ತಿದೆ ಎನ್ನುವುದನ್ನು ನಾವು ವಿವರಿಸಬಲ್ಲೆವು. ಭೂಮಿಯ ತಾಪಮಾನ ಒಟ್ಟಾರೆಯಾಗಿ ಏರುವುದನ್ನಾಗಲಿ ಅಥವಾ, ಹವಾಮಾನ ಬದಲಾಗುವುದನ್ನಾಗಲಿ ಈ ಕ್ಷಣ ಕ ವ್ಯತ್ಯಯವು ತಡೆಹಿಡಿಯಲಾರದು’.

ಕಣವಿ: ಭೂಮಿಯ ತಾಪಮಾನ ಏರುತ್ತಿರುವುದು ಖಚಿತವಾಗಿದೆಯೇ?

ರೊದ್ದಂ: ಇದಕ್ಕೆ ಉತ್ತರ, ಈ ಪ್ರಶ್ನೆಯನ್ನು ನೀವು ಯಾರಲ್ಲಿ ಕೇಳುತ್ತೀರಿ ಎನ್ನುವುದನ್ನು ಅವಲಂಬಿಸಿದೆ. ವಾಯುಮಂಡಲ ವಿಜ್ಞಾನಿಗಳು ಇದೊಂದು ಖಚಿತ ವಿದ್ಯಮಾನ ಎಂದೇ ನಂಬಿದ್ದಾರೆ. ವಿವರಣೆಯ ಸೂಕ್ಷ್ಮಗಳನ್ನು ಮರೆತು, ಹವಾಮಾನ ಬದಲಾಗುತ್ತಿರುವುದನ್ನೊಮ್ಮೆ ಸುಮ್ಮನೆ ಅವಲೋಕಿಸಿ ಎಂದು ಹೇಳುತ್ತಾರೆ. ನೋಡಿ, ಆರ್ಕ್ಟಿಕ್‍ನಲ್ಲಿ (ಉತ್ತರಧ್ರುವದಲ್ಲಿ) ಮಂಜುಗಡ್ಡೆಗಳು ಕರಗುತ್ತಾ ಇವೆ. ಇದನ್ನು ಯಾರೂ ಅನುಮಾನಿಸಲು ಸಾಧ್ಯವಿಲ್ಲ, ಸಾಕ್ಷ್ಯಗಳು ಅಷ್ಟು ಬಲವಾಗಿವೆ. ಇಲ್ಲ, ಹವಾಮಾನ ವೈಪರೀತ್ಯಗಳನ್ನೇ ನೋಡಿ. ಅವು ಮರುಕಳಿಸುವುದು ಹೆಚ್ಚುತ್ತಲೇ ಇದೆ, ಇದಕ್ಕೆ ಬಲವಾದ ಸಾಕ್ಷ್ಯಗಳೂ ಇವೆ. ವಿಜ್ಞಾನದ ಮಾದರಿಗಳು ಏನು ಹೇಳುತ್ತವೆಯೋ ಅದಕ್ಕೆ ಸರಿಹೊಂದುತ್ತವೆ ಈ ವೈಪರೀತ್ಯಗಳು. ಇಲ್ಲಿ ಒಂದು ಅಂಶವನ್ನು ಗಮನಿಸಬೇಕು. ಸರಾಸರಿಯಲ್ಲಿ ಉಂಟಾಗುವ ಬದಲಾವಣೆಗಿಂತ ವಿಪರೀತಗಳಲ್ಲುಂಟಾಗುವ ಬದಲಾವಣೆಯು ಹೆಚ್ಚು ಸ್ಪಷ್ಟವಾಗಿ ಕಾಣುತ್ತದೆ. ಹಾಗಾಗಿ, ಒಂದು ಡಿಗ್ರಿಯಲ್ಲಿ ಸಣ್ಣಭಾಗದಷ್ಟು ಕಾವು ಏರುಪೇರಾದರೆ, ಅದು ಮಳೆಯ ಸರಾಸರಿ ಮೊತ್ತದ ಮೇಲೆ ಹೆಚ್ಚು ಪರಿಣಾಮ ಬೀರುವುದಿಲ್ಲ. ಆದರೆ, ಆ ಒಟ್ಟೂ ಕಾಲಮಾನದಲ್ಲಿ ಉಂಟಾಗುವ ಅತಿವೃಷ್ಟಿ ಹಾಗು ಅನಾವೃಷ್ಟಿಯನ್ನು ಅದು ಪ್ರಭಾವಿಸುತ್ತದೆ. ಕಳೆದ ಇಪ್ಪತ್ತು ವರ್ಷಗಳ ಮುಂಗಾರನ್ನು ನೀವು ಗಮನಿಸಿದರೆ, ಒಂದು ನಿರ್ದಿಷ್ಟ ಬಗೆಯ ವೈಪರೀತ್ಯವು ಮತ್ತೆ ಮತ್ತೆ ಉಂಟಾಗುತ್ತಲೇ ಇದೆ ಎನ್ನುವುದು ನಿಮಗೆ ಗೊತ್ತಾಗುತ್ತದೆ. ಹೀಗಾಗಿಯೇ, ಭೂಮಿಯ ತಾಪಮಾನ ಏರಿಕೆನ್ನು ಕಡೆಗಣ ಸುವುದು ಅಪಾಯಕಾರಿ ಎಂದು ವಾಯುಮಂಡಲ ವಿಜ್ಞಾನಿಗಳು ಎಚ್ಚರಿಸುತ್ತಾರೆ. ಹೀಗಿದ್ದೂ, ನಾನು ಆಗಲೇ ಹೇಳಿದ ಹಾಗೆ, ಈ ವಿದ್ಯಮಾನವನ್ನು ಅಲ್ಲಗಳೆಯುವವರೂ ಇದ್ದಾರೆ, ಅವರಲ್ಲಿ ಕೆಲವು ಹೆಸರಾಂತ ಭೌತವಿಜ್ಞಾನಿಗಳೂ ಇದ್ದಾರೆ. ಕಣವಿ: ಭೂವಿಜ್ಞಾನಿಗಳು, ಕಡಲುವಿಜ್ಞಾನಿಗಳು ಏನು ಹೇಳ್ತಾರೆ ಇದರ ಬಗ್ಗೆ..? ರೊದ್ದಂ: ನನ್ನ ಪ್ರಕಾರ, ಬಹುತೇಕ ಭೂವಿಜ್ಞಾನಿಗಳಿಗೆ ಈ ವಿದ್ಯಮಾನ ವಾಸ್ತವ ಎಂದು ಮನವರಿಕೆ ಆಗಿದೆ.

ಕಣವಿ: ಹಾಗಾದರೆ, ಯಾರಿಗೆ ಮನವರಿಕೆ ಆಗಿಲ್ಲ?

ರೊದ್ದಂ: ದೊಡ್ಡ ಸಂಖ್ಯೆಯ ಉದ್ಯಮಪತಿಗಳಿಗೆ!

ಕಣವಿ: ವಿಜ್ಞಾನಿಗಳ ಸಮುದಾಯದಲ್ಲಿ?

ರೊದ್ದಂ: ವಿಜ್ಞಾನಿಗಳ ಸಮುದಾಯದಲ್ಲಿ ಭೌತವಿಜ್ಞಾನಿಗಳ ಸಣ್ಣ ಗುಂಪಿದೆ. ಅವರು ಬಹಳ ವಿಶಿಷ್ಟರು ಆದರೆ ಈ ವಿಚಾರದಲ್ಲಿ ಅಷ್ಟೇ ಸಂದೇಹಪಡುವವರು. ಏನೂ ಅರಿಯದ ವ್ಯಕ್ತಿಗಳವರು ಎಂದು ನಾನು ಹೇಳುತ್ತಿಲ್ಲ. ಭೌತವಿಜ್ಞಾನವನ್ನು ಅವರು ಮಾಡುವ ರೀತಿಯಿದೆಯಲ್ಲ, ಅದು ಅವರನ್ನು ಈ ವಿಚಾರದಲ್ಲಿ ಸಂದೇಹವಾದಿಗಳನ್ನಾಗಿಸಿದೆ. ಭೌತವಿಜ್ಞಾನದಲ್ಲಿ ಸಾಮಾನ್ಯವಾಗಿ ಒಂದು ಪ್ರಶ್ನೆಗೆ, ಹೌದು ಅಥವಾ ಇಲ್ಲ ಎಂಬ ಎರಡೇ ಉತ್ತರಗಳಿರುತ್ತವೆ. ಈ ಕಾರಣದಿಂದಾಗಿ ಭೌತವಿಜ್ಞಾನಿಗಳು ಖಚಿತ ಸಾಕ್ಷ್ಯಗಳನ್ನು ಬೇಡುತ್ತಾರೆ. ಭೂಮಿಯ ತಾಪಮಾನ ಏರಿಕೆಯ ಕುರಿತು ಅವರ ಸಂದೇಹವನ್ನು ಅವರ ಮಾತುಗಳಲ್ಲೇ ವಿವರಿಸುವುದಾದರೆ - ‘ಹವಾಮಾನ ಬದಲಾಗುತ್ತಿರುವುದಕ್ಕೆ ಯಾವ ಖಚಿತ ಸಾಕ್ಷ್ಯಗಳೂ ಇಲ್ಲ. ಹವಾಮಾನದಲ್ಲಿ ಏರಿಳಿತಗಳು ಯಾವತ್ತಿಗೂ ಇದ್ದದ್ದೇ. ಇದು ತಿಳಿದ ವಿಚಾರವೇ. ಇದರಲ್ಲಿ ವಿಶೇಷ ಏನೂ ಇಲ್ಲ. ಇನ್ನು, ಈ ಏರಿಳಿತದ ಗುಣವು ಮಹತ್ತರವಾಗಿ ಬದಲಾಗಿದೆ ಎನ್ನುವುದಕ್ಕೂ ಯಾವ ನಿಖರ ಸಾಕ್ಷ್ಯಗಳಿಲ್ಲ’. ಆದರೆ, ಹವಾಮಾನದ ವಿಪರೀತಗಳನ್ನು ಗಮನಿಸುವವರು ಹೇಳುವ ಮಾತೇ ಬೇರೆ. ಸಾಕ್ಷ್ಯಗಳು ಬಲಗೊಳ್ಳುತ್ತಲೇ ಇವೆ ಎಂದವರು ವಾದಿಸುತ್ತಾರೆ. ಹತ್ತು ವರ್ಷಗಳ ಹಿಂದೆ ಇದ್ದದ್ದಕ್ಕಿಂತ ಈಗ ಸಾಕ್ಷ್ಯಗಳು ಬಲವಾಗಿವೆ.

ಕಣವಿ: ಸರಿ. ಆದರೆ ಈ ನಿರ್ಣಯವು, ಕಳೆದ 100 ವರ್ಷಗಳ ನಂಬಲರ್ಹವಾದ ಮಾಹಿತಿಯನ್ನಷ್ಟೇ ಅವಲಂಬಿಸಿದೆ ತಾನೆ? 

ರೊದ್ದಂ: ನೀವು ಹೇಳಿದ್ದು ನಿಜ. ಅದೇ ಸಮಸ್ಯೆಯಾಗಿರುವುದು. ವಾದ, ಪ್ರತಿವಾದ ಹೀಗೆ ಮುಂದುವರಿಯುತ್ತದೆ. ಆದರೂ, ಮೋಡದ ವಿಚಾರದಲ್ಲಿ ಎಲ್ಲರು ಏಕಾಭಿಪ್ರಾಯ ಹೊಂದಿದ್ದಾರೆ. ಹವಾಮಾನದ ಮಾದರಿಗಳಲ್ಲಿ ಯಾವ ಅಂಶವು ಅತಿದೊಡ್ಡ ಅನಿಶ್ಚಿತತೆಯನ್ನು ಉಂಟುಮಾಡಬಲ್ಲದು? ಎಂಬ ಪ್ರಶ್ನೆಗೆ ನಿಸ್ಸಂಶಯವಾಗಿ ಮೋಡಗಳು ಎಂದು ಉತ್ತರಿಸಬಹುದು. ಅದರಲ್ಲೂ ನಿರ್ದಿಷ್ಟವಾಗಿ, ಮೋಡಗಳ ಹಾಗು ಕಿರಣಗಳ ನಡುವಿನ ಅಂತರ್-ಕ್ರಿಯೆಗಳೇನಿವೆ ಅವು ಅನಿಶ್ಚಿತವಾಗಿವೆ, ಸಂಕೀರ್ಣವಾಗಿಯೂ ಇವೆ. ಉದಾಹರಣೆಗೆ, ಹಗಲಿನಲ್ಲಿ ಮೋಡಕವಿದಿದ್ದರೆ ಹವಾಮಾನ ತುಸು ಹೆಚ್ಚೇ ತಂಪಾಗಿರುತ್ತದೆ. ಏಕೆಂದರೆ, ಸೂರ್ಯನ ಕಿರಣಗಳನ್ನು ಮೋಡಗಳು ಹಿಂದಕ್ಕೆ ಪುಟಿಸುವುದರಿಂದ ಆ ಕಿರಣಗಳು ಭೂಮಿಯನ್ನು ಸರಿಯಾದ ಪ್ರಮಾಣದಲ್ಲಿ ತಲುಪಲಾರವು. ಆದರೆ, ಮೋಡಕವಿದ ಇರುಳು ತುಸು ಹೆಚ್ಚೇ ಬೆಚ್ಚಗಿರುತ್ತದೆ. ಏಕೆ? ರಾತ್ರಿ ಹೊತ್ತಿನಲ್ಲಿ ಸೂರ್ಯನೇನು ಇರುವುದಿಲ್ಲ. ಆದರೆ, ಭೂಮಿಯಿಂದ ಹೊಮ್ಮುವ ಉಷ್ಣ-ಕಿರಣ (ಇನ್ಫ್ರಾರೆಡ್ ಕಿರಣ) ಮೋಡಗಳಿಂದ ಮರಳಿ ಹಿಂದಕ್ಕೆ ಪುಟಿಯುತ್ತದೆ. ಹಾಗಾಗಿ, ಮೋಡಕವಿದ ಇರುಳು ಬೆಚ್ಚಗಿದ್ದರೆ, ಮೋಡಕವಿದ ಹಗಲು ತಂಪಗಿರುತ್ತದೆ. ಮೋಡಗಳು ಕಿರಣದೊಂದಿಗೆ ಯಾವ ಬಗೆಯ ಅಂತರ್-ಕ್ರಿಯೆಯಲ್ಲಿ ತೊಡಗಿರುತ್ತದೆ ಎನ್ನುವುದಕ್ಕೆ ಇದು ಉತ್ತಮ ನಿದರ್ಶನವಾಗಿದೆ. ಇನ್ನೂ ಹಲವು ಪರಿಣಾಮಗಳಿವೆ. ಒಟ್ಟಿನಲ್ಲಿ, ಇಂಥಾ ಅಂತರ್-ಕ್ರಿಯೆಗಳೇ ಅನಿಶ್ಚಿತತೆಗೆ ಪ್ರಧಾನ ಕಾರಣ ಎನ್ನಬಹುದು. ಭಾರತದಲ್ಲಿ ಮುಂಗಾರಿನ ಕುರಿತು ಆಸಕ್ತಿ ದೊಡ್ಡ ಪ್ರಮಾಣದಲ್ಲಿದೆ. ಈ ಆಸಕ್ತಿ ವಿಶ್ವದಾದ್ಯಂತ ಈಗ ಹೆಚ್ಚುತ್ತಲೇ ಇದೆ. ಕಳೆದ 20 ವರ್ಷಗಳಲ್ಲಿ ಬೇರೆಬೇರೆ ಪ್ರದೇಶಗಳಲ್ಲಿ ಮುಂಗಾರು ಮಾದರಿಯ ಹವಾಮಾನವನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ತೀರ ಇತ್ತೀಚಿನವರೆಗೂ ಮುಂಗಾರು ಎಂದರೆ ಹಲವರ ಪ್ರಕಾರ ಭಾರತೀಯ ಮುಂಗಾರು ಎಂದಾಗಿತ್ತು. ಆದರೆ ಈಗ, ‘ಭಾರತೀಯ ಮುಂಗಾರು’ ಎಂದು ನಿರ್ದಿಷ್ಟವಾಗಿ ಗುರುತಿಸುವ ಸನ್ನಿವೇಶ ಉಂಟಾಗಿದೆ. ಏಕೆಂದರೆ, ಈಗ ‘ಆಸ್ಟ್ರೇಲಿಯಾದ ಮುಂಗಾರು’, ‘ಆಫ್ರಿಕಾದ ಮುಂಗಾರು’; ಹೀಗೆ ಬೇರೆಬೇರೆ ಮುಂಗಾರುಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ಆದರೆ, ಅವೆಲ್ಲವೂ ಭಾರತೀಯ ಮುಂಗಾರಿನ ಪ್ರಮಾಣವನ್ನು ಹೋಲಬೇಕೆಂದೇನಿಲ್ಲ.

ಕಣವಿ: ಮುಂಗಾರು ಭಾರತೀಯ ಉಪಖಂಡಕ್ಕಷ್ಟೇ ಸೀಮಿತವೇ? ಅಥವಾ, ಏಷಿಯಾದ ಇನ್ನಿತರ ಪ್ರದೇಶಗಳಲ್ಲೂ ಅದು ಕಂಡುಬರುತ್ತದೆಯೇ?

ರೊದ್ದಂ: ಬೇರೆ ಪ್ರದೇಶಗಳಲ್ಲೂ ಇವೆ ಆದರೆ, ಅವುಗಳ ಪ್ರಮಾಣ ಕಡಿಮೆ. ಮುಂಗಾರು ಎನ್ನುವುದಕ್ಕೆ ಈಗ ಹೆಚ್ಚು ಅರ್ಥವ್ಯಾಪ್ತಿ ಇರುವ ವ್ಯಾಖ್ಯಾನವೊಂದು ಸಿದ್ಧವಾಗಿದೆ. ಮುಂಗಾರು ಎಂದರೆ ಗಾಳಿಯ ಪರಿಚಲನೆಯಲ್ಲಿ ಕ್ಷಿಪ್ರ ಸ್ಥಿತ್ಯಂತರ ಆಗುವುದು. ಸ್ವಿಚ್ ಆಗುವುದು. (ಯಾವುದರ ಪರಿಚಲನೆಯು ಸ್ವಿಚ್ ಆಗುತ್ತದೆ ಎಂದು ರೊದ್ದಂ ಅವರು ಸ್ಪಷ್ಟ ಪಡಿಸಿಲ್ಲ. ಗಾಳಿಯದ್ದೇ ಇರಬೇಕು ಎಂದು ಸಂದರ್ಶನದ ಮುಂದಿನ ಭಾಗವನ್ನು ಓದಿ ಭಾವಿಸಲಾಗಿದೆ - ಅನುವಾದಕ). ಈ ಕ್ಷಿಪ್ರ ಸ್ಥಿತ್ಯಂತರವು ವರ್ಷದ ಒಂದು ನಿರ್ದಿಷ್ಟ ಸಮಯದಲ್ಲಿ ಆಗುತ್ತದೆ ಹಾಗು, ಪ್ರತಿವರ್ಷವೂ ಅದೇ ಹೊತ್ತಿನಲ್ಲಿ ಆಗುತ್ತದೆ. ಇದೊಂದು ಆವರ್ತನ. ಭಾರತದ ನೈರುತ್ಯ ಮುಂಗಾರುವಿನ ಕುರಿತು ಹೇಳುವುದಾದರೆ, ಮೇ ತಿಂಗಳ ಕೊನೆ ಅಥವಾ, ಜೂನ್ ತಿಂಗಳ ಶುರುವಿನಲ್ಲಿ ಪರಿಚಲನೆಯು ಆರಂಭಗೊಂಡರೆ ಸರಿಸುಮಾರು ಸಪ್ಟೆಂಬರ್ ಹೊತ್ತಿನಲ್ಲಿ ಅಂತ್ಯಗೊಳ್ಳುತ್ತದೆ. ಈ ವಿದ್ಯಮಾನವು, ನೆಲ ಹಾಗು ಕಡಲಿನ ನಡುವಿನ ತಾಪಮಾನ ವ್ಯತ್ಯಾಸವನ್ನು ಪ್ರಧಾನವಾಗಿ ಅವಲಂಬಿಸಿದೆ. ಹಾಗಾಗಿ, ಗಾಳಿ ಪರಿಚಲನೆಯು ಋತುಬದ್ಧವಾಗಿ ಸ್ವಿಚ್ ಆಗುವುದೇ ಮುಂಗಾರು ಎಂದು 6 ವ್ಯಾಖ್ಯಾನಿಸಿದರೆ, ಈ ಪ್ರಕ್ರಿಯೆಯು ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ಬಾರಿ ಘಟಿಸುವುದನ್ನು ನಾವು ಮನಗಾಣಬಲ್ಲೆವು.

ಕಣವಿ: ಈ ಒಟ್ಟೂ ಗಾಳಿಯ ಪರಿಚಲನೆ ಏನಿದೆ, ಅದು ತೇವಾಂಶವನ್ನು ಹೊತ್ತು ತಂದಲ್ಲಿ ಮಳೆ ಆಗುತ್ತದೆ. ಅಲ್ಲವೇ?

ರೊದ್ದಂ: ಸರಿಯಾಗಿ ಹೇಳಿದಿರಿ. ಅದು ಕಡಲಿನ ಕಡೆಯಿಂದ ಬೀಸಿದಾಗ ತೇವಾಂಶವನ್ನು ಹೊತ್ತುತರುತ್ತದೆ, ಇದರಿಂದ ಮಳೆಯೂ ಬರುತ್ತದೆ. ಭಾರತದಂಥ ಮುಂಗಾರು ಪ್ರದೇಶಗಳಲ್ಲಿ, ಬಿಸುಪಿನ ಅಲೆಯನ್ನು ಹೊರತುಪಡಿಸಿದರೆ, ಉಷ್ಣಾಂಶವೋ, ಗಾಳಿಯೋ ಆಸಕ್ತಿಯ ವಿಷಯ ಆಗುವುದಿಲ್ಲ. ಇಲ್ಲಿ ಏನಿದ್ದರೂ ಹೆಚ್ಚು ಗಮನಿಸಬೇಕಾದ ವಿಷಯ ಮಳೆ.

ಕಣವಿ: ಕಾಂಬೋಡಿಯ, ವಿಯಟ್ನಾಂ, ಲಾವೋಸ್ ಪ್ರದೇಶಗಳನ್ನು ನೋಡಿದರೆ?

ರೊದ್ದಂ: ಅವೆಲ್ಲಾ ಏಷಿಯಾದ ಆಗ್ನೇಯ ಮುಂಗಾರಿನ ಪ್ರದೇಶಗಳು. ಇಲ್ಲಿದು ಅಲ್ಲಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ. ನೀವು ಇಂಗ್ಲೆಂಡ್‍ನಲ್ಲಿ ವಾಸಮಾಡುತ್ತಿದ್ದರೆ, ಮಳೆ ಎನ್ನುವುದು ಮುಖ್ಯ ವಿಷಯವೇ ಆಗುವುದಿಲ್ಲ. ಅಲ್ಲಿ ಹೆಚ್ಚು ಕಡಿಮೆ ಪ್ರತಿದಿನವೂ ಮಳೆ ಸುರಿಯುತ್ತದೆ. ತುಂತುರು ಮಳೆ. ಹಾಗಾಗಿ, ಅವರು ಉಷ್ಣಾಂಶದ ಕುರಿತು ಹೆಚ್ಚು ತಲೆಕೆಡಿಸಿಕೊಳ್ಳುತ್ತಾರೆ. ಭಾರತದಲ್ಲಿ ನಾವ್ಯಾರೂ ಉಷ್ಣಾಂಶದ ಕುರಿತು ಹೆಚ್ಚು ಚಿಂತಿಸುವುದಿಲ್ಲ. ಏಕೆಂದರೆ, ವಾತಾವರಣವು ಇಲ್ಲಿ ಬಹುತೇಕ ಬೆಚ್ಚಗೇ ಇರುತ್ತದೆ. ನಮ್ಮಲ್ಲಿ ಅನಿಶ್ಚಿತವಾಗಿರುವುದು ಮಳೆ. ಮಳೆಯನ್ನು ಮುಂಗಾಣುವುದು ಇದೆಯಲ್ಲ ಅದು ಅತ್ಯಂತ ಕಷ್ಟಕರವಾದದ್ದು. ಮಳೆಗಿಂತ ಸುಲಭವಾಗಿ ಉಷ್ಣಾಂಶ ಹಾಗು ಗಾಳಿ ಬೀಸುವುದನ್ನು ಮುಂಗಾಣಬಹುದು. ಮಳೆ ಎನ್ನುವುದು ಸ್ಥಳ ಹಾಗು ಕಾಲ ನಿರ್ದಿಷ್ಟವಾಗಿರುತ್ತದೆ ಎಂದು ನಮ್ಮ ಅನುಭವ ತೋರಿಸಿಕೊಟ್ಟಿದೆ. ಉದಾಹರಣೆಗೆ, ಬೆಂಗಳೂರಿನ ಮಲ್ಲೇಶ್ವರಂನಲ್ಲಿ ಮಳೆಯಾಗುತ್ತಿದ್ದರೂ ಅದೇ ನಗರದ ಹಳೆ ಏಪೆರ್Çೀರ್ಟ್ ರಸ್ತೆಯಲ್ಲಿ ಅದೇ ಹೊತ್ತಿನಲ್ಲಿ ಮಳೆ ಇಲ್ಲದೇ ಇರಬಹುದು. ಹಾಗಾಗಿ, ಮಳೆಯು ಸ್ಥಳ ನಿರ್ದಿಷ್ಟವೂ, ಕಾಲ ನಿರ್ದಿಷ್ಟವೂ ಆಗಿದೆ. ಭೌತವಿಜ್ಞಾನದ ಎಲ್ಲಾ ಲೆಕ್ಕಗಳು ಮುಗಿದು ಕೊನೆಯಲ್ಲಿ ಮಳೆ ಆಗುತ್ತದೆಯೋ ಇಲ್ಲವೋ ಎಂದು ತಿಳಿಸುವ ಹಂತವಿದೆಯಲ್ಲ, ಅದು ದುಸ್ಸಾಧ್ಯವಾದದ್ದು.

ಕಣವಿ: ತೇವಾಂಶ ಎನ್ನುವುದು ಗಾಳಿಯಲ್ಲಿ ಇರುತ್ತದೆ. ಅದನ್ನು ನಾವು ಅಳೆಯಬಲ್ಲೆವು. ಯಾವ ಸಂದರ್ಭದಲ್ಲಿ ಇದು ಹನಿಬೀಳುತ್ತದೆ (ತೇವವು ಹನಿಗೊಳ್ಳುವುದು - ಕಂಡನ್ಸೇಶನ್. ಹನಿಯು ಭುವಿಗೆ ಬೀಳುವುದು - ಪ್ರೆಸಿಪಿಟೇಶನ್. - ಅನುವಾದಕ) ? ಅನಿಶ್ಚಿತತೆಗೆ ಈ ಅರಿವಿನ ಕೊರತೆಯೇ ಪ್ರಧಾನ ಕಾರಣವೇ?

ರೊದ್ದಂ: ಹೌದು. ಯಾವ ಸಂದರ್ಭದಲ್ಲಿ, ಎಷ್ಟರಮಟ್ಟಿಗೆ ಹಾಗು ಎಲ್ಲಿ ತೇವಾಂಶವು ಹನಿಬೀಳುತ್ತದೆ ಎಂದು ಗುರುತಿಸುವುದು ಪ್ರಧಾನ ಅಂಶವೇ ಆಗಿದೆ. ಹನಿಬೀಳುವುದರ ಕುರಿತು ಭೌತವಿಜ್ಞಾನಿಗಳನ್ನು ಕೇಳಿದರೆ, ಇದರ ನಿಯಮವನ್ನು ನಾವು ಬಲ್ಲೆವು ಹಾಗು ಇದನ್ನು 100 ವರ್ಷಗಳ ಹಿಂದೆಯೇ ಕಂಡುಹಿಡಿಯಲಾಗಿತ್ತು ಎಂದು ಹೇಳಿಯಾರು. ಪ್ರತಿ ಒತ್ತಡದ ಅಂಕಿಗೂ, ಆವಿಯು ಹನಿಯಾಗಲು ಒಂದು ನಿರ್ದಿಷ್ಟ ಉಷ್ಣಾಂಶವಿರುತ್ತದೆ. ಆದರೆ, ಮೋಡಗಳ ಹುಟ್ಟನ್ನು ವಿವರಿಸಲು ಈ ನಿಯಮವಷ್ಟೇ ಸಾಕಾಗುವುದಿಲ್ಲ. ಮುಂಗಾರಿನಲ್ಲಿ, ಬೆಂಗಳೂರು ಹಾಗು ಭಾರತದ ಬಹುಪಾಲು ಭಾಗಗಳಲ್ಲಿ ಕಂಡುಬರುವ ಹೇರಿದ/ಕುಪ್ಪೆ ಮೋಡಗಳು ನಿಜಕ್ಕೂ ಹರಿವಿನ ಮೋಡಗಳೇ ಆಗಿವೆ. ಇವು ನೆಲದ ಮೇಲಿನಿಂದಲೇ ರೂಪುಗೊಳ್ಳುತ್ತ ಮೇಲಕ್ಕೆ ಸಾಗುತ್ತವೆ. ಹಾಗಾಗಿ, ಈ ಪ್ರಕ್ರಿಯೆಯು ಉಷ್ಣ ಚಲನವಿಜ್ಞಾನವನ್ನಷ್ಟೇ ಒಳಗೊಂಡಿಲ್ಲ, ದ್ರವ್ಯ ಚಲನವಿಜ್ಞಾನವನ್ನೂ ಸಂಕೀರ್ಣವಾಗಿ ಒಳಗೊಂಡಿದೆ. ಅಂದರೆ, ಉಷ್ಣ ಹಾಗು ದ್ರವ್ಯ ಚಲನವಿಜ್ಞಾನದ ಪರಸ್ಪರ ಕ್ರಿಯೆಯಿಂದ ಈ ಪ್ರಕ್ರಿಯೆ ಉಂಟಾಗುತ್ತದೆ. ಹಾಗಾಗಿ, ಸ್ಥೂಲವಾಗಿ ನಾವು ಹೀಗೆ ಹೇಳಬಹುದು - ಮೋಡ ಸೃಷ್ಟಿಯ ಕೆಲಸ ನೆಲದ ಮೇಲಣ ಉಷ್ಣ ವಲಯದಿಂದಲೇ ಆರಂಭವಾಗುತ್ತದೆ. ಬಿಸಿಯಾದ ಎಲರು ಮೇಲಕ್ಕೆ ಸಾಗಿ, ಅದರಲ್ಲಿ ತೇವಾಂಶವಿದ್ದಲ್ಲಿ ಯಾವುದೋ ಒಂದು ಹಂತದಲ್ಲಿ ಹನಿಗೊಳ್ಳುವ ಉಷ್ಣಾಂಶವನ್ನದು ತಲುಪಿ, ಹನಿಗೊಳ್ಳುತ್ತದೆ.

ಕಣವಿ: ಅದು ಮತ್ತಷ್ಟು ತೂಕಗೊಂಡಾಗ ಕೆಳಗೆ ಬೀಳುತ್ತದೆ. ಅಲ್ಲವೇ?

ರೊದ್ದಂ: ಇಲ್ಲ ಇಲ್ಲ, ಅದು ಒಮ್ಮೆಲೆ ತನ್ನ ತೂಕವನ್ನು ಹೆಚ್ಚಿಸಿಕೊಳ್ಳುವುದಿಲ್ಲ. ಎಲ್ಲಾ ಮೋಡಗಳು ಮಳೆ ತರಿಸುವುದಿಲ್ಲ. ಗಾಳಿಯ ಬೀಸು ತಕ್ಕಮಟ್ಟಿಗೆ ಬಲವಾಗೇ ಇದ್ದಲ್ಲಿ ಅದು ಆ ಹನಿಗಳನ್ನು ಮತ್ತಷ್ಟು ಮೇಲಕ್ಕೆ ಕೊಂಡೊಯ್ಯುತ್ತದೆ. ಹನಿಗೊಳ್ಳುವ ಪ್ರಕ್ರಿಯೆ ಸಾಗುತ್ತ ಒಂದು ಹಂತದಲ್ಲಿ ಅಷ್ಟೂ ಆವಿಯು ನೀರಿನ ಹನಿಯಾಗುತ್ತದೆ. ಇದು ಮಳೆಯಾಗಿ ಸುರಿಯಲು ಹನಿಗಳು ದೊಡ್ಡದಾಗಬೇಕು. ತನ್ನ ತೂಕದಿಂದಲೇ ನೆಲಕ್ಕೆ ಬೀಳುವಷ್ಟು ದೊಡ್ಡದು. ಸಣ್ಣದಾಗಿದ್ದ ಪಕ್ಷದಲ್ಲಿ ಹನಿಗಳು ನೆಲಕ್ಕೆ ಬೀಳುವುದಿಲ್ಲ, ಗಾಳಿಯು ಅವುಗಳನ್ನು ತನ್ನೊಂದಿಗೆ ಒಯ್ಯುತ್ತದೆ. ಹನಿಗಳು ಹಿರಿದಾಗಿದ್ದರೆ ಮಾತ್ರ ಅವು, 8 ಮೊಡದೊಳಗಿನ ಗಾಳಿಯ ಮೇಲ್ಚಲನೆಯ ಶಕ್ತಿಗೆ ಎದುರಾಗಿ, ಮೀರಿ ಕೆಳಕ್ಕೆ ಬೀಳುತ್ತವೆ. ಇನ್ನು, ಇಂದಿಗೂ ಇಡಿಯಾಗಿ ಅರ್ಥವಾಗದ ಹಲವು ಅಂಶಗಳು ಮಳೆಯ ಪ್ರಕ್ರಿಯೆಯನ್ನು ಪ್ರಭಾವಿಸುತ್ತವೆ. ಏಕೆಂದರೆ, ಮೋಡಗಳು ಹಾಗು ಅದರ ಹೊರಗಿನ ಗಾಳಿಯ ನಡುವಿನ ಅಂತರ್-ಕ್ರಿಯೆಯೇನಿದೆ, ಅದನ್ನು ತಿಳಿಯುವುದು ಬಹಳ ದುಸ್ತರ. ಈಗ ನೋಡಿ, ಒಳಗೆ ತೇವಾಂಶವುಳ್ಳ ಗಾಳಿಯಿದೆ ಹಾಗು ಸಾಕಷ್ಟು ಪ್ರಮಾಣದಲ್ಲಿ ಹೊರಗಿನ ಗಾಳಿಯನ್ನು ಒಳಕ್ಕೆ ಹಾಯಿಸಲಾಗಿದೆ ಎಂದು ಭಾವಿಸೋಣ. ತೇವಾಂಶವು ಹನಿಯಾಗಿ ಬದಲಾಗಿದ್ದರು ಕೂಡ, ಈ ಹೊರಗಿನ ಒಣ ಗಾಳಿಯು ಮೋಡವನ್ನು ತೆಳುಗೊಳಿಸಿಬಿಡುತ್ತದೆ. ಹಾಗಾಗಿ, ಮೋಡಗಳಾಗುವುದು, ಹನಿಬೀಳುವುದು; ಇವೆಲ್ಲ ಇನ್ನೂ ಬಗೆಹರಿಯದ ಸಮಸ್ಯೆಗಳಾಗಿಯೇ ಉಳಿದಿವೆ.

ಕಣವಿ: ಮೋಡಗಳ ಒಳಗಿರುವ ತೇವದ ಗಾಳಿಯು ಮೇಲಕ್ಕೆ ಸಾಗುತ್ತ ಹಿಮಗಟ್ಟುತ್ತದೆ. ಇದರಿಂದಾಗಿ ಆಲಿಕಲ್ಲು ಅಥವಾ ಹಿಮಹರಳುಗಳು ರೂಪುಗೊಳ್ಳುತ್ತವೆಯೇ?

ರೊದ್ದಂ: ಇಲ್ಲಿ ಎರಡು ಸ್ತರ ಬದಲಾವಣೆಗಳು ಉಂಟಾಗಬಹುದು. ಆವಿಯಿಂದ ದ್ರವ್ಯವಾಗುವುದು ಒಂದು. ದ್ರವ್ಯದಿಂದ ಘನವಸ್ತುವಾಗುವುದು ಇನ್ನೊಂದು. ಪ್ರತಿಯೊಂದು ಬಾರಿ ಸ್ತರ ಬದಲಾವಣೆ ಆಗುತ್ತಲೂ ಮೋಡದೊಳಗೆ ಹರಿವಿನ ಲಕ್ಷಣಗಳು ಬದಲಾಗುತ್ತವೆ. ಏಕೆಂದರೆ, ಈ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಒಂದಿಷ್ಟು ಕಾವನ್ನು ಒಮ್ಮೆಲೇ ಆ ಹರಿವಿಗೆ ಉಣ ಸಲಾಗುತ್ತದೆ. ನಾನು ಅಧ್ಯಯನ ನಡೆಸುತ್ತ ಬಂದಿರುವ ವಿಷಯಗಳಲ್ಲಿ ಈ ವಿಚಾರವೂ ಒಂದು. ಸರಿಯಾದ ಪ್ರಮಾಣದ ಕಾವನ್ನು, ಸರಿಯಾದ ಜಾಗದಲ್ಲಿ ಆ ಹರಿವಿಗೆ ಉಣ ಸಿದರೆ ಏನಾಗುತ್ತದೆ ಎಂದು ತಿಳಿಯುವುದು. ಈ ರೀತಿಯಲ್ಲಿ, ಹರಿವು ಮೋಡದಂತೆ ಕಾಣುವ ಹಾಗೆ ಮಾಡಬಹುದು.

ಕಣವಿ: ನೀವು ವಿವರಿಸಿದ ಈ ವಿದ್ಯಮಾನ, ಉಷ್ಣ ಹಾಗು ದ್ರವ್ಯ ಚಲನವಿಜ್ಞಾನದ ಪರಸ್ಪರ ಕ್ರಿಯೆಯ ಕುರಿತು ಮಾತನಾಡಿದ್ದಿರಲ್ಲ, ಅದನ್ನೇ ಸೂಚಿಸುತ್ತದೆಯೇ?

ರೊದ್ದಂ: ಹೌದು. ಆದರೆ, ಸರಿಯಾದ ಪ್ರಮಾಣದಲ್ಲಿ ಕಾವನ್ನು ಉಣ ಸಬೇಕು. ಪ್ರಯೋಗಗಳ ಆಧಾರದಲ್ಲಿ ನನ್ನ ಅಭಿಪ್ರಾಯ ಏನೆಂದರೆ, ನೀರು, ಎಣ್ಣೆ, ಪಾದರಸ ಮುಂತಾದ ಯಾವುದೇ ದ್ರವ್ಯದಲ್ಲಿ ಮೋಡದ ಹರಿವನ್ನು ಸೃಷ್ಟಿಸಬಹುದು, ಮೋಡವು ರಚನೆಗೊಳ್ಳುತ್ತಿರುವ ಪ್ರಕ್ರಿಯೆಯನ್ನು, ಅಂದರೆ, ಪುಕ್ಕದ ಆಕೃತಿಯೊಂದು ಮೂಡುತ್ತಿರುವುದನ್ನು ನೋಡಬಹುದು. 9 ಆದರೆ ಒಂದು ಷರತ್ತಿದೆ; ಉಣ ಸುವ ಕಾವಿನ ಪ್ರಮಾಣವು ಆ ದ್ರವ್ಯದ ಹರಿವಿನ ಶಕ್ತಿಯ ಪ್ರಮಾಣದೊಂದಿಗೆ ಒಂದು ನಿರ್ದಿಷ್ಟ ಅನುಪಾತದಲ್ಲಿರಬೇಕು. ಇದನ್ನು ನೀವು ಸಾಧಿಸಿದಿರೋ, ಬಾನಿನಲ್ಲಾಗುವ ಪ್ರಕ್ರಿಯೆಗೆ ತೀರ ಹತ್ತಿರವಾದ ವಿದ್ಯಮಾನವನ್ನು ನೀವು ಕಾಣಬಲ್ಲಿರಿ. ನೀರಿನ ಹನಿಗಳ ಮೋಡವು ಕೂಡ, ಆ ಪುಕ್ಕದ ಆಕೃತಿಯೊಂದು ಮೂಡುತ್ತದಲ್ಲ, ಅದರ ಒಂದು ವಿಶೇಷ ಬಗೆಯೇ ಆಗಿದೆ. ಇದು ನಮ್ಮ ತೀರ್ಮಾನ. ನಮ್ಮ ಪ್ರಕಾರ ಮೋಡವೊಂದು ಆ ಪುಕ್ಕದ ಆಕೃತಿಯ ತಾತ್ಕಾಲಿಕ ಹಂತ. ಅದಕ್ಕೆ ಸೀಮಿತ ಜೀವಿತಾವಧಿ ಇದೆ. ನಾನು ಪ್ರಯೋಗಾಲಯದಲ್ಲಿ, ಕಂಪ್ಯೂಟರಲ್ಲಿ ಸಾಕಷ್ಟು ಪ್ರಯೋಗಗಳನ್ನು ಮಾಡುತ್ತ ಬಂದಿದ್ದೇನೆ. ಅದು ಬಹಳ ಮೋಜಿನ ಕೆಲಸ, ತುಂಬ ಖುಷಿ ಕೊಟ್ಟಿದೆ. ನಾವು ದಿನನಿತ್ಯ ಏನೆಲ್ಲ ನೋಡುತ್ತೇವೆ, ಯಾವೆಲ್ಲವನ್ನು ಬೆರಗಿನಿಂದ ಕಾಣುತ್ತೇವೆ ಮತ್ತು ಪ್ರೀತಿಸುತ್ತೇವೆ ಅವೆಲ್ಲವನ್ನು ನಾವಿನ್ನೂ ಸರಿಯಾಗಿ ಅರ್ಥಮಾಡಿಕೊಂಡಿಲ್ಲ ಎಂಬ ವಿಷಯ ಬಹಳಷ್ಟು ಜನರಿಗೆ ಆಶ್ಚರ್ಯಕರ ಸಂಗತಿಯಾಗಿದೆ.

ಕಣವಿ: ಮೋಡಗಳ ರಚನೆಯು ಅವ್ಯವಸ್ಥಿತವಾದದ್ದು, ಚಿಟ್ಟೆ ಪರಿಣಾಮಕ್ಕೆ ಒಳಗಾದದ್ದು, ಸಿಕ್ಕಾಪಟ್ಟೆ ಗೊತ್ತಿರದ ಅಂಶಗಳನ್ನು ಒಳಗೊಂಡದ್ದು; ಹೀಗೆ ಕಾರಣಗಳನ್ನೊಡ್ಡಿ ಅವುಗಳ ಅಧ್ಯಯನವನ್ನೇ ಕೈಚೆಲ್ಲಿದ್ದಾರಲ್ಲ ಬಹಳಷ್ಟು ಮಂದಿ. (ಚಿಟ್ಟೆ ಪರಿಣಾಮ - ಇದು ಅವ್ಯವಸ್ಥೆ ಸಿದ್ಧಾಂತದ --ಖೇಯಾಸ್ ಥಿಯರಿ, ಪಾರಿಭಾಷಿಕ ಪದ. ಇಲ್ಲಿ, ಒಂದು ಪ್ರಕ್ರಿಯೆಯ ಕೊನೆಯ ಸ್ಥಿತಿಗಳು ಮೊದಲ ಸ್ಥಿತಿಗಳನ್ನು ಎಷ್ಟು ಅವಂಬಿಸಿರುತ್ತವೆ ಎಂದರೆ, ಮೊದಲ ಸ್ಥಿತಿಗಳಲ್ಲುಂಟಾಗುವ ಅತಿಸಣ್ಣ ಬದಲಾವಣೆಯು ಕೊನೆಯ ಸ್ಥಿತಿಗಳನ್ನು ನೆಲಬಾನಂತರದಷ್ಟು ಬದಲಾಯಿಸಿಬಿಡುತ್ತವೆ. ಈ ಪರಿಣಾಮವನ್ನೇ ಚಿಟ್ಟೆ ಪರಿಣಾಮ ಎಂದು ಕರೆಯಲಾಗುತ್ತದೆ - ಅನುವಾದಕ).

ರೊದ್ದಂ: ನೀವು ಗುರುತಿಸಿದ್ದು ನಿಜ. ಮೋಡಗಳ ವೈಜ್ಞಾನಿಕ ಅಧ್ಯಯನ 1960ರ ದಶಕದಲ್ಲಿ ಶುರುವಾಯಿತು. ಬಹಳ ಸರಳವಾದ ಪ್ರಯೋಗಗಳನ್ನು ನಡೆಸಲಾಯಿತು. ದುರಾದೃಷ್ಟವಶಾತ್, 1970ರ ದಶಕಕ್ಕೆ ಬರುವ ಹೊತ್ತಿಗೆ, ಆ ಸರಳ ಪ್ರಯೋಗಗಳು ಮೋಡಗಳಂತೆ ವರ್ತಿಸುತ್ತಿಲ್ಲ ಎಂದು ಮನಗಾಣಲಾಯಿತು. ಹೀಗಾಗಿ, ಪ್ರಯೋಗಾಲಯಗಳಲ್ಲಿ ಮೋಡದ ಹರಿವನ್ನು ಸೃಷ್ಟಿಸುವ ಪ್ರಯತ್ನಗಳು ಕಡಿಮೆಯಾದವು. ಆದರೆ, ಸಂಶೋಧಕರು ಎಲ್ಲಿ ಬಿಟ್ಟಿದ್ದರೋ ಅಲ್ಲಿಂದ ನಾವು ಅಧ್ಯಯನವನ್ನು ಮುಂದುವರಿಸಿದೆವು. 10 1980ರಲ್ಲಿ, ಬೆಂಗಳೂರಿನ ಭಾರತೀಯ ವಿಜ್ಞಾನ ಸಂಸ್ಥೆಯಲ್ಲಿ (ಐ.ಐ.ಎಸ್‍ಸಿ) ನನ್ನ ವಿದ್ಯಾರ್ಥಿಗಳ ಕೂಡೆ ಒಂದು ಪ್ರಯೋಗಕ್ಕೆ ಕೈಹಾಕಿದೆ. ಜಿ ಎಸ್ ಭಟ್ ಆ ವಿದ್ಯಾರ್ಥಿಗಳಲ್ಲಿ ಮೊದಲಿಗನಾಗಿದ್ದ (ಪ್ರಸ್ತುತ ಅವರು ಐ.ಐ.ಎಸ್‍ಸಿಯ ಸಿಎಓಎಸ್ ವಿಭಾದಲ್ಲಿ ಪ್ರಾಧ್ಯಾಪಕರು). ಆ ಪ್ರಯೋಗ ಸಾಕಷ್ಟು ವಿಷಯಗಳನ್ನು ಹೊರಗೆಡವಿತು. ಅಲ್ಲಿಂದ ಮೊದಲ್ಗೊಂಡು ಇಲ್ಲಿಯವರೆಗೂ ನಾನು ಒಂದಲ್ಲಾ ಒಂದು ರೀತಿಯಲ್ಲಿ ಮೋಡಗಳ ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಿರುವೆ. ಪ್ರತಿ ಬಾರಿ ಪ್ರಯೋಗ ನಡೆಸಿದಾಗಲೂ, ಮೋಡವನ್ನು ಹೋಲುವ ಹರಿವಿನ ಸೃಷ್ಟಿಗೆ ನಾವು ಮತ್ತಷ್ಟು ಹತ್ತಿರ ಬರುತ್ತಲೇ ಇದ್ದೇವೆ. ನಮ್ಮ ನೀರಿನ ತೊಟ್ಟಿಯಲ್ಲೀಗ ಮೋಡದ ಹಲವು ಪ್ರಕಾರಗಳನ್ನು ಮರುಸೃಷ್ಟಿಸಬಹುದಾಗಿದೆ. ಈ ಹಂತ, ಹಲವು ಜನರನ್ನು ಇತ್ತ ಗಮನ ಹರಿಸುವಂತೆ ಮಾಡಿದೆ. ಸದ್ಯ ನನ್ನ ಆಸಕ್ತಿ, ಆ ಎಲ್ಲದರ ವಿವರಗಳನ್ನು ಕಂಪ್ಯೂಟರ್‍ನಲ್ಲಿ ತರಿಸುವುದು. ಪ್ರಯೋಗಾಲಯದಲ್ಲಿ ಆ ಎಲ್ಲಾ ಸ್ಥಿತಿಗಳನ್ನು, ಅಂದರೆ, ಆವಿ, ಹನಿಗೊಳ್ಳುವ ಪ್ರಕ್ರಿಯೆ ಮುಂತಾದವುಗಳನ್ನು ಮರುಸೃಷ್ಟಿಸುವುದು ಇದೆಯಲ್ಲ, ಅದು ಬಹಳ ಕಷ್ಟದ ಕೆಲಸ. ಪ್ರಯೋಗಾಲಯದಲ್ಲಿ ಅಣ ಗೊಳಿಸುವ ವ್ಯವಸ್ಥೆ ಬಹಳ ದೊಡ್ಡದಾಗಿರಲು ಸಾಧ್ಯವಿಲ್ಲವಲ್ಲ. ಆದರೆ, ಕಂಪ್ಯೂಟರ್‍ನಲ್ಲಿ ಆ ಸಮಸ್ಯೆ ಎದುರಾಗುವುದಿಲ್ಲ. ಒಂದು ದೃಷ್ಟಿಯಿಂದ, ಕಂಪ್ಯೂಟರ್ ಬಳಸುವುದರಿಂದ ನನಗೆ ಹೆಚ್ಚಿನ ಸ್ವಾತಂತ್ರ್ಯ ಸಿಗಲಿದೆ. ಸೂಪರ್ ಕಂಪ್ಯೂಟರ್‍ನ ವೇಗಕ್ಕೆ ನನಗೆ ಪ್ರವೇಶ ದೊರೆತಿರಬೇಕಷ್ಟೆ. ಸದ್ಯಕ್ಕೆ ನಾವು ಕಂಪ್ಯೂಟರ್‍ನಲ್ಲಿ ಮೋಡಗಳ ಪ್ರತ್ಯನುಕರಣೆಯನ್ನು (ಸಿಮುಲೇಶನ್) ಮಾಡುತ್ತಲಿದ್ದೇವೆ.

ಕಣವಿ: ನೀವು ಯಾವ ಕಂಪ್ಯೂಟರ್ ಬಳಸುತ್ತಲಿದ್ದೀರಿ?

ರೊದ್ದಂ: ಅದೊಂದು ದೊಡ್ಡ ಸಮಸ್ಯೆ. ಬೆಂಗಳೂರಿನ ಸಿಎಸ್‍ಐಆರ್ ಫೋರ್ತ್ ಪ್ಯಾರಡಾಯ್ಮ್ ಇನ್ಸ್ಟಿಟ್ಯೂಟ್ (ಸಿಎಸ್‍ಐಆರ್ - 4ಪಿಐ) (ಈ ಸಂಸ್ಥೆಯ ಹಳೆಯ ಹೆಸರು ಸಿಎಂಎಂಎಸಿಎಸ್ - ಸಿಎಸ್‍ಐಆರ್ ಸೆಂಟರ್ ಫಾರ್ ಮ್ಯಾಥಮಾಟಿಕಲ್ ಮಾಡೆಲಿಂಗ್ ಆಂಡ್ ಕಂಪ್ಯೂಟರ್ ಸಿಮ್ಯುಲೇಶನ್) ಒಂದು ದೊಡ್ಡ ಕಂಪ್ಯೂಟರ್ ಅನ್ನು ತರಿಸಿಕೊಂಡಿತ್ತು. ಅದರಲ್ಲಿ ನಾನು ಸಾಕಷ್ಟು ಲೆಕ್ಕಗಳನ್ನು ಮಾಡಿದೆ. ಆದರೆ, ಅದೂ ಈವಾಗ ಸಾಕಾಗುತ್ತಿಲ್ಲ. ಪೂಣೆಯ ಐಐಟಿಎಂ (ಇಂಡಿಯನ್ ಇನ್ಸ್ಟಿಟ್ಯೂಟ್ ಆಫ್ ಟ್ರಾಪಿಕಲ್ ಮೆಟೆರಾಲಜಿ) ಅಲ್ಲಿ ಶಕ್ತಿಯುತವಾದ ಕಂಪ್ಯೂಟರೊಂದಿದೆ. ಐಐಎಸ್‍ಸಿ ಅಲ್ಲಿ ಕ್ರೇ ಎಂಬ ಕಂಪ್ಯೂಟರ್ ಇದೆ. ಇವೆರಡರಲ್ಲೂ ಕೆಲವೊಮ್ಮೆ ಲೆಕ್ಕಗಳನ್ನು ಮಾಡುತೆ ್ತೀನೆ.

ಕಣವಿ: ನನ್ನದೊಂದು ತರಲೆ ಪ್ರಶ್ನೆ ಇದೆ. ನಮ್ಮಲ್ಲಿ, ಸುದೀರ್ಘ ಪರಂಪರೆಯುಳ್ಳ ಪಂಚಾಂಗ ವ್ಯವಸ್ಥೆ ಇದೆ. ಹವಾಮಾನದ ಆಗುಹೋಗುಗಳನ್ನು ಗುರುತಿಸಲೂ ಅದನ್ನು ಬಳಸಲಾಗುತ್ತದೆ. ಇದೇ ಕಾರಣಕ್ಕಾಗಿ ಅದು ಕೃಷಿ ಆರ್ಥಿಕತೆಗೆ ಬಹಳ ಮುಖ್ಯ ಅನಿಸಿದೆ. ಭಾರತೀಯ ಹವಾಮಾನ ಇಲಾಖೆಯಿಂದ ಕಳೆದ 100 ವರ್ಷಗಳ ನಂಬಲರ್ಹ ಮಾಹಿತಿಯು ಈಗ ದೊರೆಯುವುದರಿಂದ, ಹವಾಮಾನದ ವಾಸ್ತವಾಂಶಗಳನ್ನು ಪಂಚಾಂಗದ ಭವಿಷ್ಯತ್-ವಾಣ ಯೊಂದಿಗೆ ಹೋಲಿಸಿ ನೋಡಬಹುದಲ್ಲವೇ? ಅವೆರಡರ ನಡುವಿನ ಸಂಬಂಧ ಹಾಗು ಪಂಚಾಂಗ ನುಡಿಯುವ ಕಣ ಯ ನಿಖರತೆಯನ್ನು ಒರೆಗೆ ಹಚ್ಚಬಹುದಲ್ಲ?

ರೊದ್ದಂ: ಮಳೆಯನ್ನು ದೃಷ್ಟಿಯಲ್ಲಿಟ್ಟು ನೋಡುವುದಾದರೆ, ಅವೆರಡರ ನಡುವಿನ ಸಂಬಂಧ ಬಹಳ ಶಿಥಿಲವೆಂದೇ ಹೇಳಬೇಕಾಗುತ್ತದೆ. ಒಂದು ಉದಾಹರಣೆ ಕೊಡುತ್ತೇನೆ. ಮೈಸೂರು ಅರಸು ಸಂಸ್ಥಾನದಲ್ಲಿ, ಮಹಾರಾಜರ ಪ್ರೋತ್ಸಾಹದಿಂದ ಒಂಟಿಕೊಪ್ಪಲು ಪಂಚಾಂಗವನ್ನು ರಚಿಸಲಾಗಿತ್ತು. ಆದರೆ, ಪಂಚಾಂಗವು ರೇಖಾಂಶವನ್ನು ಅವಲಂಬಿಸಿದ್ದು. ಹಾಗಾಗಿ, ಆ ಪಂಚಾಂಗವು ಇಡೀ ಕರ್ನಾಟಕಕ್ಕೆ ನಿಖರವಾಗಿ ಅನ್ವಯಿಸುವ ಸಾಧ್ಯತೆಯೇ ಇರದು. ಹೀಗೆಂದ ಮಾತ್ರಕ್ಕೆ, ಪಂಚಾಂಗಗಳಲ್ಲಿ ಯಾವ ಜ್ಞಾನವೂ ಇರಲಿಲ್ಲ ಎಂದೇನಲ್ಲ. ಮಳೆಗಾಲವು ಗಾಲಿಯುರುಳಿನಂತೆ ಮರುಕಳಿಸುವಂಥದ್ದು ಎಂಬ ತಿಳಿವು ಅವುಗಳಲ್ಲಿತ್ತು. ವರ್ಷ (12 ತಿಂಗಳ ಅವಧಿ) ಪದದ ಮೂಲ ಅರ್ಥ ಮಳೆ ಎನ್ನುವುದೇ ಆಗಿದೆ. ಮಳೆಯು ಋತುಬದ್ಧವಾಗಿರುವಂಥದ್ದು - ವರ್ಷಕ್ಕೊಮ್ಮೆ ಬರುವಂಥದ್ದು. ಹಾಗಾಗಿ, 12 ತಿಂಗಳ ಅವಧಿಯನ್ನು ಸೂಚಿಸುವ ಪದವೂ, ಮಳೆಯನ್ನು ಸೂಚಿಸುವ ಪದವೂ ಒಂದೇ ಆಗಿದೆ. ಮಳೆಯು ಸರಿಸುಮಾರು ಮೂರರಿಂದ ನಾಲ್ಕು ತಿಂಗಳು ಇರುತ್ತದೆ ಎಂಬ ಸ್ಥೂಲ ತಿಳಿವೂ ಪಂಚಾಂಗಗಳಲ್ಲಿತ್ತು.

ಕಣವಿ: ಅಲ್ಲದೆ, ಆ ಆವರ್ತನಗಳ ನಡುವೆ ಹಲವು ನಕ್ಷತ್ರಗಳನ್ನು ಗುರುತಿಸಲಾಗಿದೆ. ಮಳೆಗಾಲದ ಬೇರೆಬೇರೆ ಹಂತಗಳಿಗೆ ಬೇರೆಬೇರೆ ನಕ್ಷತ್ರಗಳು.

ರೊದ್ದಂ: ಹೌದು. ಅದು ಸತತ ಅನುಭವದಿಂದ ಪಡೆದ ಜ್ಞಾನ. ಸರಿಯಾಗಿದೆ ಕೂಡ. ಆದರೆ, ಪ್ರದೇಶದಿಂದ ಪ್ರದೇಶಕ್ಕೆ ಅದು ವ್ಯತ್ಯಾಸಗೊಳ್ಳುತ್ತದೆ. ಹಾಗಾಗಿ, ಐಐಎಸ್‍ಸಿಯಲ್ಲಿ ಒಂದು ಪ್ರಯೋಗ ನಡೆಸಿದೆ. ಅದು, ನೀವು ಯೋಚಿಸುತ್ತಿರುವ ರೀತಿಯಲ್ಲಿ ಅಲ್ಲದಿದ್ದರೂ ನಕ್ಷತ್ರಗಳ ಅರಿವನ್ನು ಬಳಸುವವರನ್ನಂತೂ ಅದು ಒಳಗೊಂಡಿತ್ತು. ರೈತರನ್ನು ಮಾತನಾಡಿಸೋಣ ಹಾಗು ಯಾವ ರೀತಿಯ ಮುನ್ಸೂಚನೆಗಳನ್ನು ಅವರು ನೀಡುತ್ತಾರೆ ಎನ್ನುವುದುನ್ನು ಗಮನಿಸೋಣ ಎಂದು ಹೇಳಿದೆ. ಇದರ ಭಾಗವಾಗಿ ಕೆಲವು ರೈತರನ್ನು ಭೇಟಿಯಾಗಿ ಅವರನ್ನು ಐಐಎಸ್‍ಸಿಗೆ ಆಹ್ವಾನಿಸಿದ್ದೆವು. ಮೊಟ್ಟಮೊದಲನೆಯದಾಗಿ, ಹವಾಮಾನದ ಕುರಿತು ತಮ್ಮನ್ನು ಮಾತನಾಡಿಸಲು ಜನರು ಬಂದಿದ್ದಾರಲ್ಲ ಎಂದು ತಿಳಿದೇ ಅವರೆಲ್ಲರಿಗೂ ಬಹಳ ಸಂತೋಷವಾಗಿತ್ತು. ನಾನು ಅದಾಗಲೇ ಒಂದು ಕೆಲಸ ಮಾಡಿದ್ದೆ. ಹವಾಮಾನ ಇಲಾಖೆಯ ಎಲ್ಲಾ ಅಂಕಿಅಂಶಗಳನ್ನು, ಮಳೆಯ ದಾಖಲಾತಿಗಳನ್ನು ನಕ್ಷತ್ರಗಳ ಅನುಸಾರದಲ್ಲಿ ಮರುವಿಂಗಡಿಸಿದ್ದೆ. ಆ ಎಲ್ಲದರ ಮಾಹಿತಿ ಸಿಎಓಎಸ್ (ಸೆಂಟರ್ ಫಾರ್ ಅಟ್ಮಾಸ್ಫೆರಿಕ್ ಆಂಡ್ ಓಶಿಯಾನಿಕ್ ಸೈನ್ಸಸ್, ಐಐಎಸ್‍ಸಿ) ಜಾಲತಾಣದಲ್ಲಿದೆ. ಇದನ್ನಿಟ್ಟುಕೊಂಡು ನಾವೆಲ್ಲ ಸುದೀರ್ಘವಾಗಿ ಮಾತನಾಡಿದೆವು. ಅಲ್ಲಿ ಮೂಡಿದ ಅಭಿಪ್ರಾಯವೇನೆಂದರೆ, ನಮ್ಮ ಯಾವುದೇ ಮುನ್ಸೂಚನೆಗಳು, ಅವನ್ನು ಹವಾಮಾನ ಇಲಾಖೆಗಳೇ ನೀಡಿರಲಿ ಅಥವಾ ಪಂಚಾಂಗವೇ ನೀಡಿರಲಿ, ಅಸಮರ್ಪಕವಾಗಿವೆ ಎಂದು.

ಕಣವಿ: ನಮ್ಮ ಹವಾಮಾನ ಇಲಾಖೆಯು ವಿವರವಾದ ಮುನ್ಸೂಚನೆಗಳನ್ನು ನೀಡುವುದಿಲ್ಲ. ಸಾಧಾರಣ, ಸಾಧಾರಣಕ್ಕಿಂತ ಕಡಿಮೆ, ಮುಂಗಾರು; ಇಷ್ಟನ್ನೇ ಹೇಳುತ್ತದೆ. ಆದರೆ ಯು.ಎಸ್ ನಲ್ಲಿ, ಮುಂದಿನ 12, 24, 48, 72 ಗಂಟೆಗಳ ಮುನ್ಸೂಚನೆಯನ್ನು ಬಹಳ ನಿಖರವಾಗಿ ಅಲ್ಲಿನ ಪ್ರತಿ ಪ್ರದೇಶಗಳೂ, ಪ್ರತಿ ಟಿವಿ ಚ್ಯಾನಲ್ಲುಗಳೂ ನೀಡುತ್ತವೆ. ಆದರೆ, ಭಾರತದಲ್ಲಿ ಹಾಗಿಲ್ಲ. ಇಲ್ಲಿ ಹವಾಮಾನ ಮುನ್ಸೂಚನೆಯು ತ್ರಾಸದಾಯಕವಾಗಿರಲು ಕಾರಣ ಏನು?

ರೊದ್ದಂ: ಇದು ಬಹಳ ಮುಖ್ಯವಾದ ಪ್ರಶ್ನೆ. ನೋಡಿ, ಯುರೋಪ್ ಹಾಗು ಉತ್ತರ ಅಮೇರಿಕವಿರುವ ಮೇಲ್ಮಟ್ಟದ ಅಕ್ಷಾಂಶಗಳಲ್ಲಿ ಹವಾಮಾನದ ಚಲನವಲನಗಳು ಕೆಳಮಟ್ಟದ ಉಷ್ಣವಲಯಕ್ಕಿಂತ ಸರಳವಾಗಿವೆ. ಉಷ್ಣವಲಯದಲ್ಲಿ ಅವು ಹೆಚ್ಚು ಸಂಕೀರ್ಣವಾಗಿವೆ. ಮುಂಗಾರಿನ ಮುನ್ಸೂಚನೆಯಲ್ಲಿ ಬ್ರಿಟೀಷರು ಹಾಗು ಅಮೇರಿಕನ್ನರು ನಮಗಿಂತ ಉತ್ತಮರು ಎಂದೇನೂ ಅಲ್ಲ. ಅವರೂ ಆವಾಗಾವಾಗ ಗುರುತರ ತಪ್ಪುಗಳನ್ನು ಮಾಡಿದ್ದಾರೆ. ನಾವೂ ತಪ್ಪು ಮಾಡುತ್ತಿರುತ್ತೇವೆ, ನಿಜ. ಆದರೆ, ಈ ಮಾತು ಅವರಿಗೂ ಅನ್ವಯಿಸುತ್ತದೆ. ಇಡಿ ಪ್ರಪಂಚದಲ್ಲೇ ಮುಂಗಾರಿನ ಕುರಿತು ಅತಿಹೆಚ್ಚು ಆಸಕ್ತಿ ಹೊಂದಿರುವವರು ನಾವಾಗಿದ್ದೇವೆ. ಏಕೆಂದರೆ, ನಮ್ಮ ಆರ್ಥಿಕತೆಯು ಮುಂಗಾರನ್ನು ಬಹುವಾಗಿ ಅವಲಂಬಿಸಿದೆ. ಇನ್ನು ಹಲವು ಕಾರಣಗಳಿಗಾಗಿಯೂ ಮುಂಗಾರು ಅಧ್ಯಯನ ನಮಗೆ ಮುಖ್ಯ. ಹಾಗಾಗಿ, ಮುಂಗಾರು ಅಧ್ಯಯನದಲ್ಲಿ ನಾವು ಮುಂಚೂಣ ಯಲ್ಲಿರಬೇಕಾದ್ದು, ಪರಿಣತರಾಗಿರಬೇಕಾದ್ದು ಅತ್ಯಗತ್ಯ.  ಆದರೆ, ಭಾರತದ ಅತ್ಯುತ್ತಮ ಮೆದುಳುಗಳು ಮುಂಗಾರು ಅಧ್ಯಯನದಲ್ಲಿ ತೊಡಗಿಸಿಕೊಳ್ಳದೆ, ಪಶ್ಚಿಮ ದೇಶಗಳಲ್ಲಿ ರೂಢಿಯಲ್ಲಿರುವ ಅಧ್ಯಯನ ವಿಷಯಗಳ ಹಿಂದೆಹಿಂದೆ ಸಾಗುತ್ತವೆ. ಆದರೆ, ಪಶ್ಚಿಮ ದೇಶಗಳು ತಮಗೆ ಯಾವುದು ಮುಖ್ಯವೋ ಅದನ್ನೇ ಅಧ್ಯಯನ ಮಾಡುತ್ತವೆ! ಪಶ್ಚಿಮ ಜಗತ್ತಿನ ವಿಜ್ಞಾನಿಗಳು ತಮ್ಮ ಸಮಸ್ಯೆಗಳನ್ನು ಅವಲೋಕಿಸಿದಷ್ಟು ತೀವ್ರವಾಗಿ ಭಾರತೀಯ ವಿಜ್ಞಾನಿಗಳ ಸಮೂಹವು ತಮ್ಮ ದೇಶದ ಸಮಸ್ಯೆಗಳನ್ನು ಅವಲೋಕಿಸಿಲ್ಲ. ಆದರೆ, ಇತ್ತೀಚೆಗೆ ಪರಿಸ್ಥಿತಿ ಕೊಂಚ ಬದಲಾಗುತ್ತಿದೆ. ಒಂದನ್ನಂತೂ ಹೇಳಬಹುದು; ಭಾರತದಲ್ಲಷ್ಟೇ ಅಲ್ಲ, ಇಡೀ ಜಗತ್ತಿನಲ್ಲಿ ಸದ್ಯ ಇರುವ ಜ್ಞಾನದ ಮಟ್ಟವನ್ನು ಬಳಸಿಕೊಂಡು ಮುಂಗಾರನ್ನು ಮುನ್ಸೂಚಿಸುವುದು ಇದೆಯಲ್ಲ, ಅದು ಬಹಳ ಕಷ್ಟದ ಕೆಲಸ. ಅಮೇರಿಕದಿಂದ ಅಜ್ಞಾತ ಕಂಪ್ಯೂಟರ್ ಕೋಡ್ಗಳನ್ನು ಎರವಲು ಪಡೆಯುವುದು ಮುಂತಾದ ಚಟುವಟಿಕೆಗಳಿಗಷ್ಟೇ ಭಾರತೀಯ ಪ್ರತಿಸ್ಪಂದನೆ ಸೀಮಿತವಾಗಿದೆಯೇ ಹೊರತು, ಮುನ್ಸೂಚಿಸುವುದರಲ್ಲಿ ನಮ್ಮ ಅನುಭವವೇನು ಹೆಚ್ಚು ಶ್ರೀಮಂತವಾಗಿಲ್ಲ. ಅಮೇರಿಕದವರೇ, ‘ನಮ್ಮಿಂದ ಮುಂಗಾರನ್ನು ಮುಂಗಾಣುವುದು ಸಾಧ್ಯವಿಲ್ಲ’ ಎನ್ನುತ್ತಾರಲ್ಲ!

ಕಣವಿ: ಎಲ್ ನೀನೊ ಮುಂತಾದ ವಿದ್ಯಮಾನಗಳ ಕುರಿತು ಮಾತನಾಡುವುದಾದರೆ? ಎಲ್ ನೀನೋ ಭಾರತದ ಮುಂಗಾರಿನ ಮೇಲೆ ಪರಿಣಾಮ ಬೀರಿದ್ದನ್ನು ಭಾರತೀಯ ವಿಜ್ಞಾನಿಗಳು ಖುದ್ದು ಗಮನಿಸಿದರೇ? ಅಥವಾ, ಆ ವಿಷಯವನ್ನು ನೇರವಾಗಿ ಪಶ್ಚಿಮದಿಂದ ಎರವಲು ಪಡೆದರೇ?

ರೊದ್ದಂ: ಇದೊಂದು ಕುತೂಹಲ ಕೆರಳಿಸುವ ಪ್ರಶ್ನೆ. ಮೊದಮೊದಲಿಗೆ ಈ ವಿದ್ಯಮಾನವನ್ನು ಎಲ್ ನೀನೊ ಎಂದು ಗುರುತಿಸಲಾಗಿರಲಿಲ್ಲ. ಎಲ್ ನೀನೊಗೆ ಸಂಬಂಧಿಸಿದಂತೆ ಭೌತಿಕ ವಿದ್ಯಮಾನಗಳನ್ನು ಮೊಟ್ಟಮೊದಲು ಗುರುತಿಸಿದವರು ಭಾರತೀಯ ಹವಾಮಾನ ಇಲಾಖೆಯ ಅಂದಿನ ಬ್ರಿಟಿಷ್ ಮುಖ್ಯಸ್ಥರಾದ ಸರ್ ಗಿಲ್ಬರ್ಟ್ ವಾಕರ್, ಸರಿಸುಮಾರು 1915-20ರಲ್ಲಿ. ಆತ ಚಾಣಾಕ್ಷನಾಗಿದ್ದ. ಭಾರತಕ್ಕೆ ಬಂದ ಸಂದರ್ಭದಲ್ಲಿ ಆತನಿಗೆ ಹವಮಾನ ವಿಜ್ಞಾನದ ಕುರಿತು ಏನೇನೂ ಗೊತ್ತಿರಲಿಲ್ಲ. ಆದರೆ ಅದರೆಡೆಗೆ ಸಮ್ಮೋಹಿತನಾಗಿದ್ದ. ಆದರೆ, ಕೆಲವೇ ಸಮಯದಲ್ಲಿ ಆತ, ಮುಂಗಾರು ತುಂಬ ವಿಕ್ಷಿಪ್ತವಾದದ್ದು ಎಂಬ ತೀರ‍್ಮಾನಕ್ಕೆ ಬಂದ - ಇದರ ಚಲನಕ್ರಮವನ್ನು ಸರಿಯಾಗಿ ಅರ್ಥೈಸಲು ಯಾರಿಂದಲೂ ಸಾಧ್ಯವಿಲ್ಲ ಎಂದು ತಿಳಿದ. ‘ನಾನು ಸಂಖ್ಯಾಶಾಸ್ತ್ರದ ಆಧಾರದಲ್ಲಿ ಮುನ್ಸೂಚನೆಗಳನ್ನು ನೀಡುತ್ತೇನೆ’ ಎಂದು ಭಾವಿಸಿ, ಹವಾಮಾನ ಇಲಾಖೆಗೆ ಸಂಖ್ಯಾಶಾಸ್ತ್ರೀಯ ಮುನ್ಸೂಚನಾ ವಿಧಾನವನ್ನು ಪರಿಚಯಿಸಿದ.  ತೀರ ಇತ್ತೀಚಿನವರೆಗೂ, ವಾಕರ್‍ನ ತಾತ್ವಿಕ ಚಿಂತನೆ, ಅವನ ಸೂತ್ರ ಎಂದು ನಿಖರವಾಗಿ ಹೇಳುವುದಕ್ಕಿಂತ ಅವನ ತಾತ್ವಿಕ ಚಿಂತನೆ, ಭಾರತೀಯ ಹವಾಮಾನ ಇಲಾಖೆಯ ಮುನ್ಸೂಚನೆಗಳನ್ನು ನಿಯಂತ್ರಿಸುತ್ತಿತ್ತು, ನಿರ್ದೇಶಿಸುತ್ತಿತ್ತು. ಈಗ ವಸಂತ್ ಗೋವಾರಿಕರ್ ಅವರ ಮಾದರಿ ಎನ್ನುವುದು ಇದೆ. ಇದು, ವಾಕರ್ ಮಾದರಿಗಿಂತ ಹೆಚ್ಚಿನ ನಿಯತಾಂಕಗಳನ್ನು ಒಳಗೊಂಡಿದೆ. ಆದರೂ, ತಾತ್ವಿಕ ಚಿಂತನೆ ಎರಡು ಮಾದರಿಗಳಲ್ಲೂ ಒಂದೇ ಆಗಿದೆ. ವಾಕರ್ ಕಂಡುಹಿಡಿದ ಹಲವು ವಿಚಾರಗಳಲ್ಲಿ, ಭಾರತದ ಮುಂಗಾರಿಗೂ ಆಸ್ಟ್ರೇಲಿಯಾದಲ್ಲಿ ಏನು ಸಂಭವಿಸುತ್ತದೋ ಅದಕ್ಕೂ ನಿಕಟ ಸಂಬಂಧವಿದೆ ಎಂಬ ವಿಚಾರವೂ ಒಂದು. ಬ್ರಿಟಿಷ್ ಸಾಮ್ರಾಜ್ಯವಿದ್ದ ಕಾಲದಲ್ಲಿ ಬಹಳ ಸುಲಭವಾಗಿಯೇ ಅದರ ವಸಾಹತುಗಳಿಂದ ಮಾಹಿತಿಗಳನ್ನು ಆತ ಪಡೆದುಕೊಂಡ. ಮಾಹಿತಿಯ ಮಿಕ್ಕ ಜಾಗತಿಕ ಜಾಲಗಳು ಆಗ ಬಲವಾಗಿರಲಿಲ್ಲ, ಆ ಮಾತು ಬೇರೆ. ಹೀಗೆ, ಪೋರ್ಟ್ ಡಾರ‍್ವಿನ್‍ನಲ್ಲೋ, ಪರ್ತ್ ಅಲ್ಲೋ ಗಾಳಿಯ ಒತ್ತಡವು ಉಂಟುಮಾಡುವ ಪರಿಣಾಮವು, ಮುಂದೊಂದು ದಿನ ಭಾರತದ ಮುಂಗಾರಿನ ಪರಿಣಾಮವನ್ನು ಪ್ರಭಾವಿಸುತ್ತದೆ ಎನ್ನುವಂಥ ಅಂಶಗಳನ್ನು ಕಂಡುಹಿಡಿದ. ಈ ವಿಚಾರವನ್ನು ಯಾರು ಕೂಡ ಚಿಂತಿಸಲೂ ಸಾಧ್ಯವಾಗದ ಸಂದರ್ಭ ಅದಾಗಿತ್ತು. ಮೋಡಗಳಿಂದಾಗಿ ಮುಂಗಾರು ಉಂಟಾಗುತ್ತದೆ, ಇಲ್ಲಿನ ಮುಂಗಾರಿಗೂ ದೂರದಲ್ಲೆಲ್ಲೋ ಇರುವ ಪರ್ತ್‍ನಲ್ಲಿ ನಡೆಯುವುದಕ್ಕೂ ಯಾವ ಬಾದರಾಯಣ ಸಂಬಂಧ? ಎಂದು ಬಹುತೇಕರು ನಂಬಿದ್ದರು. ಜನರು ವಾಕರ್‍ನ ನಿಲುವುಗಳನ್ನು ಕಟುವಾಗಿ ಟೀಕಿಸಿದರು. ಆದರೆ, ವಿಪರ್ಯಾಸ ಏನೆಂದರೆ, ಆತ ಸತ್ತ ಎರಡೇ ವರ್ಷಗಳಲ್ಲಿ, ಇನ್ನೂ ನಿಖರವಾದ ಮಾಪನಗಳಿಂದಾಗಿ ಅವನು ಸೂಚಿಸಿದ ಆ ಬಾದರಾಯಣ ಸಂಬಂಧ ನಿಜವೆಂದು ಸಾಧಿತಗೊಂಡಿತು! ಆ ಗೆಲುವನ್ನು ಕಾಣಲು ಪಾಪ ಅವನು ಬದುಕಿರಲಿಲ್ಲ. ಅಲ್ಲಿಗೆ ಆ ಸಂಬಂಧದ ಕುರಿತು ಯಾವ ಸಂಶವೂ ಉಳಿದಿರಲಿಲ್ಲ. ಇದೇ ವಿದ್ಯಮಾನವು ಬೆಳೆದು ಎಲ್ ನೀನೊ ಎನಿಸಿಕೊಂಡಿತು. ಭಾರತದ ಮುಂಗಾರು ಹಾಗು ಉತ್ತರ ಆಸ್ಟ್ರೇಲಿಯಾದ ವಿದ್ಯಮಾನಗಳ ನಡುವಿನ ಯಾವ ನಂಟನ್ನು ವಾಕರ್ ತೊರಿಸಿದ್ದಾನೋ, ಅದು ಎಲ್ ನೀನೊವಿನ ಒಂದು ಸೂಚನೆ. ಈ ವಿದ್ಯಮಾನ ಆಸ್ಟ್ರೇಲಿಯಾಗಷ್ಟೇ ಸಂಬಂಧಪಟ್ಟಿದ್ದಲ್ಲ. ಕಣವಿ: ಈ ಅಟ್ಲಾಂಟಿಕ್ ತೂಗುವಿಕೆ (ಒಸಿಲೇಶನ್) ಇದ್ದಹಾಗೆ ಪೆಸಿಫಿಕ್ ತೂಗುವಿಕೆ ಎನ್ನುವುದು ಇದೆಯೇ? ರೊದ್ದಂ: ಹಾ, ಪೆಸಿಫಿಕ್ ತೂಗುವಿಕೆಗೆ ಎಲ್ ಸೊನಾ ಎನ್ನಲಾಗುತ್ತದೆ. ಎಲ್ ನೀನೊ ದಕ್ಷಿಣದ ತೂಗುವಿಕೆ (ಇಎನ್‍ಎಸ್‍ಓ). ಉತ್ತರ ಅಟ್ಲಾಂಟಿಕ್ ತೂಗುವಿಕೆ (ಎನ್‍ಎಓ) ಎಂಬ ಹೆಸರಿನದ್ದೂ ಒಂದಿದೆ. ಇನ್ನೂ ಹಲವು ತೂಗುವಿಕೆಗಳನ್ನು ಪತ್ತೆಹಚ್ಚಲಾಗಿದೆ. ತೂಗುವಿಕೆಯ ಪರಿಣಾಮಗಳ ಮುನ್ಸೂಚನೆಗಳನ್ನು ಹೆಚ್ಚು ನಿಖರವಾಗಿ ನೀಡಬಹುದು. ಈ ಕಾರಣದಿಂದಾಗಿ, ಅದಕ್ಕೂ ಮುಂಗಾರಿಗೂ ಇರುವ ನಂಟನ್ನು ಗುರುತಿಸಬಹುದು. ಇದನ್ನೇ ವಾಕರ್ ಮಾಡಿದ್ದು. ಈ ವಿದ್ಯಮಾನವನ್ನು ಪತ್ತೆಮಾಡಲಾಗಿದ್ದು ಭಾರತದಲ್ಲಲ್ಲವೇ? ಎಂದು ನೀವು ಕೇಳಬಹುದು. ಆದರೆ, ಭಾರತೀಯನಿಂದಲ್ಲ, ಬ್ರಿಟಿಷ್ ಹವಾಮಾನತಜ್ಞನಿಂದ. ಹೀಗಿದ್ದೂ ಒಂದು ವಿಷಯವನ್ನಂತೂ ಅಲ್ಲಗಳೆಯಲಾಗದು. ಅವನಿಗೆ ಹಲವು ಮಂದಿ ನೆರವಾಗಿದ್ದರಲ್ಲದೆ ಎಲ್ಲಾ ಲೆಕ್ಕಗಳನ್ನು ಭಾರತೀಯರೇ ಮಾಡಿದ್ದರು.

ಕಣವಿ: ಭಾರತೀಯ ಬಾಹ್ಯಾಕಾಶ ಸಂಶೋಧನ ಸಂಸ್ಥೆಯು (ಇಸ್ರೋ) ಹವಾಮಾನ ಅಧ್ಯಯನಕ್ಕಾಗಿಯೇ ಉಪಗ್ರಹಗಳನ್ನು ಕಳಿಸಿತ್ತು. ಕಡಲಿನ ಮೇಲ್ಮೈ ತಾಪಮಾನ, ಮುಂತಾದ ಅಂಶಗಳ ಅಧ್ಯಯನ ಅವುಗಳ ಉದ್ದೇಶವಾಗಿತ್ತು. ಆ ಉಪಗ್ರಹಗಳಿಂದ ಏನಾದರು ಸಹಾಯ ಆಗಿದೆಯೇ?

ರೊದ್ದಂ: ಹೌದು, ದೊಡ್ಡ ಮಟ್ಟದಲ್ಲಿ ಆಗಿದೆ. ಕಣ ್ಣಗೆ ಕಟ್ಟುವಂಥ ಉದಾಹರಣೆ ಬೇಕೆಂದರೆ ಬಿರುಗಾಳಿಗಳ ಮುನ್ಸೂಚನೆಯನ್ನೇ ನೋಡಬಹುದು. ಇತ್ತೀಚೆಗೆ ಒದಿಶಾದಲ್ಲಿ ದೊಡ್ಡ ಚಂಡಮಾರುತವೊಂದು ಅಪ್ಪಳಿಸಿತ್ತು. ಇದರ ಪಥಗತಿಯನ್ನು ಹವಾಮಾನ ಇಲಾಖೆ ಸರಿಯಾಗಿಯೇ ಮುಂಗಂಡಿತ್ತು. ಏಕೆಂದರೆ, ಅವರ ಬಳಿ ಉಪಗ್ರಹದಿಂದ ದೊರೆತ ಸಮಗ್ರ ಮಾಹಿತಿ ಇತ್ತು. ಹೀಗಾಗಿ, ಆ ಬಿರುಗಾಳಿಯ ಜಾಡನ್ನು, ಅದರ ಹುಟ್ಟಿದಾರಭ್ಯದಿಂದಲೂ ಗುರುತಿಸಲಾಯಿತು. ನಿಮಗೆ ನೆನಪಿರಬಹುದು. ಕಳೆದ ಬೃಹತ್ ಚಂಡಮಾರುತದಲ್ಲಿ ಸಾವಿರಾರು ಜನರು ಸತ್ತಿದ್ದರು. ಆದರೆ, ಈ ಸಲದ ಒದಿಶಾ ಚಂಡಮಾರುತದಲ್ಲಿ ಸತ್ತವರು ಹತ್ತೋ ಇಪ್ಪತ್ತೋ ಮಂದಿಯಷ್ಟೇ. ಇಷ್ಟಲ್ಲದೆ, ಉತ್ತರಾಖಂಡದ ಕೇದರನಾಥದಲ್ಲಿ ಉಂಟಾದ ಮೇಘಸ್ಫೋಟವನ್ನು ಅದು ಘಟಿಸುವ ಮುನ್ನವೇ ನಮ್ಮ ಹವಾಮಾನ ಇಲಾಖೆ ಬಯಲಿಗೆ ಎಳೆದಿತ್ತು. ಆದರೆ ದುರದೃಷ್ಟವಶಾತ್ ನಮ್ಮ ಯಾವ ಸರಕಾರಿ ಇಲಾಖೆಗಳೂ ಅದನ್ನು ಗಂಭೀರವಾಗಿ ಪರಿಗಣ ಸಲಿಲ್ಲ. ಈ ನಡೆ ದೊಡ್ಡ ಅನಾಹುತಕ್ಕೆ ದಾರಿಮಾಡಿಕೊಟ್ಟಿತು. ಈ ಕಹಿ ಘಟನೆಯನ್ನು ನೆನಪಿಟ್ಟುಕೊಂಡು ಅಧಿಕಾರವರ್ಗದವರಾಗಲಿ, ರಾಜಕಾರಣ ಗಳಾಗಿ ಒದಿಶಾ ಚಂಡಮಾರುತದ ಸಮಯದಲ್ಲಿ ಸರಿಯಾದ ಏರ್ಪಾಡಿಲ್ಲದೆ ಸಿಕ್ಕಿಹಾಕಿಕೊಳ್ಳಲು ಬಯಸಲಿಲ್ಲ. ಹಾಗಾಗಿ, ಹವಾಮಾನ ಇಲಾಖೆಯ ಮುನ್ನೆಚ್ಚರಿಕೆಯನ್ನು ಅವರೆಲ್ಲ ಗಂಭೀರವಾಗಿ ಪರಿಗಣ ಸಿದರು ಹಾಗು, ಈ ಕಾರಣದಿಂದ ಸಾವು-ನೋವಿನ ಸಂಖ್ಯೆಯೂ ಕಡಿಮೆಯಾಯಿತು. ಇವೆಲ್ಲವು ಏನು ತಿಳಿಸುತ್ತದೆ ಅಂದರೆ, ನಾವು ಅಲ್ಪಾವಧಿಯ ಮುನ್ಸೂಚನೆಗಳನ್ನು ನೀಡುವುದರಲ್ಲಿ ಪರಿಣ ತರಾಗುತ್ತಿದ್ದೇವೆ. ಡಾಪ್ಲರ್ ರೆಡಾರ್‍ಗಳು ಅಲ್ಪಾವಧಿ ಮುನ್ಸೂಚನೆಗಳನ್ನು ನೀಡಲು ನೆರವಾದರೆ, ಒಂದು ಬಿರುಗಾಳಿಯ ಒಟ್ಟೂ ಜೀವಿತ ವರ್ತುಲವನ್ನು ಅರಿಯಲು ಉಪಗ್ರಹಗಳು ನೆರವಾಗುತ್ತವೆ. ಹವಾಮಾನ ಬದಲಾವಣೆಯನ್ನು ಅಧ್ಯಯನ ಮಾಡಲೂ ಅವು ಸಹಾಯಕ್ಕೆ ಬರುವವು. ಈ ಎಲ್ಲಾ ತಂತ್ರಜ್ಞಾನವನ್ನು ಬಳಸಿಕೊಂಡು, ಕಳೆದ 20-30 ವರ್ಷಗಳಲ್ಲಿ ಯಾವೆಲ್ಲ ಬದಲಾವಣೆಗಳು ಆಗಿವೆ ಎನ್ನುವುದನ್ನು ನಾವು ಅರಿಯಬಲ್ಲೆವು.

ಕಣವಿ: ಕಂಪ್ಯೂಟರ್ ಮಾದರಿಗಳು ಸಹಾಯಕ್ಕೆ ಬಂತೇ?

ರೊದ್ದಂ: ಎರಡು ದಿನಗಳ ಮಟ್ಟಿಗೆ ಕಂಪ್ಯೂಟರ್ ಮಾದರಿಗಳು ನೆರವಿಗೆ ಬಂತು. ಆದರೆ, ನಿರೀಕ್ಷಿತ ಮಟ್ಟದಲ್ಲಿ ನೆರವಾಗಿಲ್ಲ. 

ಕಣವಿ: ಉನ್ನತ ಅಕ್ಷಾಂಶಗಳಲ್ಲಿ ಕಂಪ್ಯೂಟರ್ ಮಾದರಿಗಳನ್ನು ಬಳಸುವುದು ಸುಲಭವೇ?

ರೊದ್ದಂ: ಸ್ಥೂಲವಾಗಿ ನೋಡಿದರೆ ಸುಲಭ ಅಂತಲೇ ಕಾಣ ಸುತ್ತದೆ. ಉಷ್ಣವಲಯದ ಕಂಪ್ಯೂಟರ್ ಮಾದರಿಗಳಲ್ಲಿ ನಮ್ಮನ್ನು ಅವಕ್ಕಾಗಿಸಿದ್ದು ಮೋಡಗಳು. ಉನ್ನತ ಅಕ್ಷಾಂಶ ವಲಯದಲ್ಲಿ ಕುಪ್ಪೆ ಮೋಡಗಳು ಹೆಚ್ಚಾಗಿ ಕಂಡುಬಾರವು. ಅವು ವಾಯುಮಂಡಲದ ಪರಿಚಲನೆಯನ್ನೂ ಪ್ರಭಾವಿಸವು. ಆ ವಲಯದಲ್ಲಿ ಬಹುಪಾಲು ಸ್ಥಾವರ ಮೋಡಗಳು, ಚದುರಿದ ಮೋಡಗಳು ಕಂಡುಬರುತ್ತವೆ. ಇದಕ್ಕೆ ವ್ಯತಿರಿಕ್ತವಾಗಿ ಭಾರತದಲ್ಲಿ ಮೋಡಗಳ ಪ್ರಾಮುಖ್ಯತೆ ಹೆಚ್ಚೇ ಇದೆ. ನಾನು ಮೋಡಗಳ ಅಧ್ಯಯನದಲ್ಲಿ ಆಸಕ್ತಿ ಹೊಂದಲು ಇದೇ ಕಾರಣ.

ಕಣವಿ: ಪ್ರೊ. ನರಸಿಂಹ ಅವರೇ, ತುಂಬು ಹೃದಯದ ಧನ್ಯವಾದ. ಈ ಮಾತುಕತೆ ನನಗೊಂದು ಕಲಿಕೆಯಾಯಿತು.

****************************************