Monday 6 August 2007

Special Report--Bhabha Atomic Research Centre

Business India September 6-19, 1999


Thorium is the word

Often criticized for being covered in a shroud of security and secrecy, Bhabha Atomic Research Centre has been the incubator of many strategically important technologies. Today Anil Kakodkar is focusing BARC on developing thorium technology for power generation

Shivanand Kanavi

When you are finally able to get through the security shielded gates of BARC understandable after Pokhran-II - and enter its labs ensconced in verdant surroundings in Trombay, you are likely to hear only two words - Thorium and mum. Ask director Anil Kakodkar or any senior scientist about the future of BARC and they will say, "Thorium". But if you want to know anything about Pokhran-I1, thermonuclear bombs, nuclear submarines, and so on, be warned - mum's the word.

A band of highly motivated scientists and engineers went about building Apsara, the first nuclear reactor in Asia, more than 45 years ago at the Atomic Energy Establishment, Trombay. Today they have converted that marshland into a veritable storehouse of science and technology. "As far as scientific and engineering expertise goes, I think we have a goldmine here," says Anil Kakodkar. A 56-year-old nuclear engineer, Kakodkar threw away several offers from the private sector after his graduation from VJTI, and joined the atomic energy establishment against the wishes of his friends and relatives, but he has not looked back since then.

"Every day here, is a challenge for an engineer or a scientist. We have vastly grown since those early days and today have over 4,500 scientists and engineers on this campus and about 10,000 technicians and support staff. Naturally the informality that existed then is difficult to maintain, but as for scientific dissent, we thrive on it. In fact, if we had all the division heads here for this discussion on BARC we may not have a very peaceful session!" he says.

Is the money spent on BARC commensurate with its output? One observer who preferred to remain anonymous said: "Half of India's R&D budget has gone into atomic energy. Is that justified?" This is a question often asked both by the lay public and in scientific circles, though it has been muted after the five nuclear explosions in Pokharan in May 1998. For most people BARC has always meant the bomb, but why are scientific circles envious of BARC? The answer, naturally, is money. When research funding in India has been meagre the fight for a share of the pie becomes intense.

Indian universities are starved of research funds. Even leading universities do not have any. Many top-ranking universities have cut down the number of research journals they used to subscribe to for want of money. As for modernising labs and other infrastructure, the less said the better. Increasingly, they are being asked to raise funds from non-governmental sources, primarily industry and alumni. Even the blue-eyed boys of higher education and research in the IITS found it traumatic when they were told that government funds were no longer available.

However, the IITS have been lucky. Criticised for their flight to North America, it is these very alumni that are coming to their aid. The IITS are increasingly tapping them for funds and are having some success. Kanwal Rekhi, a successful entrepreneur in the Silicon Valley, is in fact confident that nearly $500 million can be raised from IIT alumni worldwide if the idea is marketed properly. University Department of Chemical Technology at Mumbai has pioneered non-governmental fundraising through industrial consultancy and donations from alumni. Of course, it helps when UDCT'S alumni practically run India's chemical industry. But one swallow does not a summer make.

The 44 national laboratories of CSIR which form the largest chain of publicly-funded R&D labs in the world have an annual budget only twice that of BARC! However, CSIR saw the writing on the wall in the late 1980s and, in the past five years, under R.A. Mashelkar's leadership, has implemented a vigorous programme of innovation and technology marketing worldwide. This is making a positive impact on R&D in India in terms of a trend, though the large numbers have yet to come. In such a situation, would you grudge a scientist outside atomic energy and space a little bit of heartburn?

So what has been the outcome of R&D at BARC? Strategically it is clear that the single most important contribution to India's nuclearisation programme has come from BARC. Its founders were way ahead of their times and invested in a small way in many technologies that have proved strategically indispensable. For example, reprocessing spent fuel from power reactors and some research reactors leads to recovery of fissile material like plutonium, which can be used to either build fission bombs or fuel other power reactors. It is obviously a dual-use technology.

Research into reprocessing started way back in 1963-64, much before any fuel needed reprocessing. In fact, India is one of the very few countries today which has this complex chemical technology. This work has two aspects. One, obviously, was Pokharan-I in 1974. But it also led to reprocessing at an industrial level, so that today reprocessing plants at Trombay, Tarapur, and Kalpakkam are operating with BARC technology. The simultaneous work on fast breeder reactors with French help has led to important cumulative experience in this technology so that a new Indira Gandhi Centre for Atomic Research has been built at Kalpakkam near Chennai to develop this further towards building a 500 MW-prototype fast breeder reactor. Such a reactor will produce more fissile material than it consumes, roughly in a ration of 1:1.2, and hence the name 'breeder'.

Similarly, the unit in BARC which assembled instruments for controls at Apsara and later CIRUS (Canada-India Research Reactor) was spun off as Electronic Corporation of India (ECIL), which produces control instrumentation not only for all the reactors but also for several defence projects. The work done on heavy water production using a new hydrogen sulphide process has been industrialised under the Heavy Water Board, which runs several plants that produce heavy water for the power reactors.

A small group at BARC known as the Atomic Fuel Division took on the challenge of fabricating fuel for the Apsara, CIRUS, and Tarapur plants despite the fact that the original equipment suppliers from the UK, Canada, and the US were ready to supply it themselves. This work led to the large industrial Nuclear Fuel Complex at Hyderabad that fabricates all the fuel elements required for the power reactors. The isotope division, which used research reactors like CIRUS and, later, Dhruva to produce over a hundred radioactive isotopes for medical and other applications, has spun off another industrial unit, BRIT (Board for Radiation and Isotope Technology). Today over 150 hospitals practice nuclear medicine and about 500 laboratories use radio-immuno-assay techniques. Nearly a million patients a year in India are investigated using radio isotope techniques developed at BARC, with isotopes made industrially by BARC. Moreover, 350 commercial organisations have sprung up to service the need for isotope radiography used in non-destructive testing of industrial plants.

The nuclear power plants themselves require a lot of R&D work for operation and maintenance. Some of it involves advanced reverse engineering in adverse circumstance when you do not even possess the drawings of spares, as in the case of Tarapur Atomic Power plant, in other cases it involves innovative work to keep the power running. For example, Kakodkar is proud of the work done to get the reactors at Chennai on line when they were about to be shut down for good because of a moderator manifold collapse in the heart of the reactor. Similarly, when the coolant channels in the two Rajasthan reactors had to be replaced, BARC developed the expertise and the robotics required - a highly complex engineering challenge. Till then only Canada had the technology, but the BARC-NPC technology was much cheaper and accomplished the task in less time and well within the radiation exposure limits.

"If you want to discuss the commercial or industrial applications of R&D carried out at BARC then these are some major ones. Our mandate has been to develop the technology of applying nuclear energy for power and other purposes. It is clear that BARC has been the mother institution for the entire nuclear industry in India," says Kakodkar. "The monies earned through transferring some of the spinoff technologies like the enzyme-based process to manufacture invert sugar, used heavily in biscuits and the confectionery industry, or particle size analysers are used in the pharmaceutical industry, etc, are incidental. Unlike CSIR laboratories, which were set up to develop processes and technologies for existing industry and earn money through royalties and licensing, were set up to give birth to many industries which did not even exist," says A.K. Anand, director of the Reactor Projects Group, who is in charge of technology transfer and international relations.

"For example, the expertise in robotics developed at BARC under M.S. Ramkumar's leadership is of a very high standard. We had to develop it to build an online fuelling machine for the power reactors and then a coolant channel inspection system for the same.Just then Indian Oil Corporation, which owns over 6,000 km of overland cross-country pipelines, tapped this expertise. Thus came into being the Instrumented Pipeline Inspections Gauge (IPIG), which will soon be tested on the Patna-Barauni pipeline. Since IOC pays over a Rs11akh per kilometre for such an inspection to foreign companies who hold proprietary technologies, the development of IPIG is very welcome," says Kakodkar. "Similarly, several groups started working on parallel processing in the early 1990s in India when the Cray XMP computer was denied to us and even the purchase of the Cray XMP by the meteorological department had several humiliating conditions attached. Our supercomputer group produced Anupam, which has reached 1.3 gigaflop speed and is the only Indian supercomputer that is successfully running the weather modelling programme," he adds.

Being such a hi-tech centre, isn't BARC concerned about intellectual property rights (IPR)? "We are slowly becoming aware of IPR in the case of non-nuclear technologies and are preparing to protect some of our innovations. As far as strategic technologies are concerned the issue does not arise. If somebody is ready to licence these technologies for a fee there is no problem. We can then say there is a free market for technology. But if such technologies are brought under sanctions and embargoes, where is the issue of patents?" asks Kakodkar, warming up to the subject of IPR.

"In the 1950sand 1960s, when there was hardly any high-technology infrastructure in the country. But now that there are the IITS, the CSIR labs, etc, is it necessary to do everything under one roof and that too such diverse things as biotechnology, lasers, and parallel processing?" ask some critics. Kakodkar says things are changing. He believes in networking and that is why there is an increasing emphasis on partnering with universities, the IITS, and the CSIR labs. At the same time he claims that only four engineers worked on Anupam and that, some of the biotechnology was a by-product of work being done with nuclear applications in mind. "We have a simple guideline to approve projects - they have to be relevant or excellent. That gives a general focus to the work. The specific focus, of course, is thorium, while work on isotope technology will continue," he says.

What is thorium technology and what is its relevance to India? "India has a limited supply of uranium (estimated reserves are only 78,000 tonnes) as against 518,000 tonnes of thorium. Therefore, to achieve long-term energy security, it is imperative to develop technology for large scale electricity generation using thorium," says R.K. Sinha, head of the reactor engineering group. (see box)

While the reactor engineering group is busy setting up critical facilities for advanced heavy water reactors that will use large amounts of thorium as fuel, K. Balu and his group at the nuclear recycle group are already studying reprocessing and waste treatment for thorium. Balu's group is credited with having developed the vitrification technology that will immobilise highly radioactive nuclear waste in a glasslike structure so that the waste will not leach out. This glass will be further covered by two stainless steel jackets and then lowered into a thick concrete vault built into basaltic rock. The site is chosen so that there is very little seismicity in the area and no fissures that carry groundwater. "The technology is there, though it will be used several decades later," says Balu.
Thus the whole cycle of making fuel bundles, designing reactors that will burn thorium, reprocessing the spent fuel, and disposing of waste are being worked on today with thorium as the centre. "Just as the technology that we are now using in power reactors was developed about 30 years ago, we need to start developing technologies that will be used 30 years hence," says Kakodkar.

Pokhran fallout

"A major management technique that Kakodkar is associated with at BARC is the formation of multi-disciplinary task forces," says A.P. Jayaraman, a senior scientist who now heads the public awareness division. "We have at least 20 major task forces operating today," says Kakodkar. "The composition is purely need-based and not hierarchical. These groups also work in a very transparent way - nobody can hide behind technical jargon to explain why he did not fulfill his task"
Like all hi-tech organisations in the country, BARC is losing up to 30 per cent of its young scientists working in computers and electronics within five years of their joining. But Kakodkar points out that this is happening in the IT industry itself. Pokhran-II, of course, has helped attract young people to BARC. Recently, when he went to deliver the convocation address at IIT Madras, the generally self-effacing Kakodkar was faced with hordes of IIT graduates asking for his autograph. "For the first time in my life," he says.

Did Pokhran-II create butterflies in his belly? "Surprisingly, no. In fact the only time I remember spending a sleepless night was when, as a young engineer at BARC 30 years ago, I went ahead with designing and putting together a high-pressure, high¬ temperature loop beg, borrow, or steal. The day before it was to be tested I could not sleep as I had not listened to the traditional wisdom of some of my senior colleagues and had done what I thought was right. But the next day it worked." Kakodkar still carries the courage of his convictions, but has grown wise enough to carry his junior and senior colleagues with him. At BARC undoubtedly there is a spring in everybody's step. Pokhran has contributed to it in no small measure and Kakodkar's leadership no less.


BARC budget
Rs crore
1996-97 1997-98 1998-99 1999-2000
Revenue
(salaries, Consumables) 220 290 330 340
Capital ex (new assets) 42 57 103 200


Unlocking thorium secrets

India would be a leader in nuclear technology if it develops the thorium cycle for power.

Thorium has several advantages over uranium.
• Worldwide thorium deposits are three times more than that of uranium. In India’s case it is nearly seven times.
• Thorium is a more fertile material than natural uranium, i.e. there will be a larger percentage of thorium 232 converted to fissile uranium 233 than uranium 238 converted to plutonium 239 in the existing pressurised heavy water reactors.
• Thorium is a better conductor of heat and that makes the fuel bundles last longer in the reactor without significant deterioration.
• Long-lived radioactive by-products (actinides) which create waste disposal problems are produced in much less quantity in the thorium fuel cycle than with uranium.
BARC today is concentrating on all elements of a thorium fuel cycle, from fuel fabrication to reprocessing and extraction of uranium 233 while avoiding the complications posed by the highly radioactive U232, and then disposing of the waste produced during the thorium cycle. For experimental purposes thorium is already being loaded into existing power reactors. This has not only helped in power-flattening in the core of the reactor but also provided some quantity of U233. Exposing thorium to neutrons in the Dhruva research reactor has also generated small quantities of U233. A new research reactor Kamini has been built using U233 and thorium.

The whole three-stage nuclear programme might take considerable time for both technological and financial reasons. For example, according to the original plan, 10,000 MW was supposed to be produced by 2000. However, after the Nuclear Power Corporation placed orders with equipment suppliers for advanced procurement and so on, funding was withdrawn by the Central government. That left both NPC and Indian industry involved in hi-tech nuclear fabrication high and dry.

Business India is witness to the fact that two 500MW reactors, which will now be erected in Tarapur around 2004, were already fabricated and lying ready in 1993 at BHEL, Walchandnagar, and L&T! Thus the biggest brakes on India’s nuclear power programme have been the planners in Delhi rather than the Department of Atomic Energy.

In such a situation Kakodkar and his team at BARC have come up with an innovative intermediate solution called the advanced heavy water reactor (AHWR). This technology is highly competitive compared to the existing technologies in several ways:

• Instead of heavy water, ordinary water is used as a coolant.
• The complexity of steam generation is greatly reduced, thereby reducing delivery time.
• Natural convection used in safety systems reduces the capital costs considerably.
• It is thermally more efficient due to the use of moderator heat in preheating feed water.
• Coolant channels can be constructed on an assembly line, thereby reducing construction cost and time.
• It is safer than existing reactor technologies.
The additional advantage of AHWRs will be the use of a large amount of thorium in the fuel. However, since nobody in the world yet possesses thorium technology, BARC’s efforts today will start having positive economic effect in 2020. Considering that the technologies being used industrially today for power production were actually worked on 30 years back that is really investing in the future.

Radiation with a heart

The word 'radiation' conjures up images of the deformed bodies after Hiroshima. However, radiation can be lifesaving as well. Besides the well-known gamma irradiation of tumours using Cobalt-60 units that are supplied all over India by BARC, the centre's scientists have also come to the rescue of cardiac surgeons. One of the techniques used to save cardiovascular patients suffering from choked arteries is angioplasty.

Simply put, the surgeon sends a tiny balloon into a choked artery and inflates it at the right place. The additional internal pressure thus expands the blood vessel, facilitating the flow. To make sure that the arterial walls do not collapse, surgeons insert tiny metallic coils called stents within the blood vessel. However, these stents can cause tiny injuries to the walls and when these injuries heal the scar tissue can choke up the vessel again.

BARC scientists led by S.M. Rao and his team at the isotope division came up with a solution for this fatal problem. They coated these stents with tiny amounts of radioactive phosphorus so that wounds caused by stents are cauterised in a short time, preventing scar formation and saving the patient's life. Already 30-40 such implants have been carried out by surgeons on Mumbai with a very good success rate. Currently multicentric trials of this technique are being carried out and, if successful, will give patients undergoing angioplasty a new lease of life.

Nuclear medu wada

Hardly any body outside of BARC or its nuclear agriculture division and a few agriculture universities might know that 95 per cent of urad dal (black gram) grown in Maharashtra is a BARC product. Urad, a pulse whose flour is the main ingredient of medu wada, a popular south Indian snack, is produced with varieties developed by genetically altering conventional breeds through irradiation. The variety TAU-1 has led to an increase of yield per hectare by 29 percent.

Similarly, a popular mustard variety grown in Assam is another BARC product. The widely exported large-sized groundnut is another BARC product Trombay Groundnut (TG-1). Today more and more varieties of ground nuts, soya beans, moong dal, and tur dal, are produced with higher yields, pest-resistance, and other desirable qualities.

Plant breeders and farmers depend on the genetic variability available in nature for cross-breeding and developing new breeds. The former is the result of .spontaneous mutations. However mutations can be induced artificially to enhance variability manifold. One of the most efficient methods of changing plant genes (mutagenesis) is exposing the seeds to neutrons or gamma radiation. The irradiated seeds are deeply studied to understand the effect brought about by irradiation and it has been found that best results are obtained when these modified seeds are further used in cross-breeding. BARC has been working in this field since the early 1970s and the result is a little-known but significant contribution to increased food production.

No comments: