Thursday 26 July 2007

Amar Bose--A Portrait

Business India, January 22-February 4, 2001

In pursuit of excellence

Shivanand Kanavi

While we were preparing the list of hi-tech entrepreneurs in the US, and discussing optical networking, gigabit routers, switches, chips and software, it struck us: how could we forget the original Indian entrepreneur in hi-tech, Dr Amar Bose of Bose Corporation? Starting way back in 1964, when most present-day entrepreneurs were in graduate schools or even in high schools, Bose set up his company to produce speakers. The privately-held com­pany is considered the biggest audio brand in the world today, and its revenues are expected to cross a billion dol­lars this year. The name Bose is whispered in hushed tones by audiophiles. His speakers and audio systems are perva­sive and can be seen in NASA programmes, US Air Force, homes, stadiums, theatres and auditoria. However, very little is known of Bose, the man himself.

The media-shy Dr Bose graciously agreed to meet us for an interview and photo session at his headquarters in Framingham, Massachusetts. When we mentioned that we would be meeting Bose, Desh Deshpande told us: "I know very little about him and would love to read his story in Business India.” And Mukesh Chatter said: "That man is way up there. He is the dean of all of us."

Bose Corporations' headquarters, popularly called "the mountain", is on top of the now verdant dirt hill, created in the early part of the century, during the construction of the US highway system. It is a gleaming glass structure shaped like a, take your guess, an audio system. We entered it with certain awe, but we were pleasantly surprised to meet the legend, a friendly, informal and animated speaker. The 45-minute interview stretched to two-and-a­ half hours as he realised that we were as interested in his life story as in his research in statistical communication theory and acoustics at MIT.

Technically, Bose is not an India-born Indian-American, like most people we met, but his bonds with India and its struggle for independence are as strong as you can get. His father Noni Gopal Bose was a member of a revolutionary group, while he was studying physics in Calcutta University. Two weeks before his University examinations, the British police caught on to him. Luckily, Bose Sr. made a successful escape to the US in 1920 on a boat with no passport and $5 in his pocket, with the Special Branch hot on his heels. After coming to the US, Bose Sr. worked full-time with a New York-based revolutionary group headed by Dr Taraknath Das, mobilising moral and material support for India's struggle for indepen­dence. He married an American schoolteacher and settled down in Philadelphia. "In a sense, my mother was more Indian than me. She was a vegetarian and deeply interested in Vedanta and Hindu philosophy," says Bose. The connec­tion with Indian revolutionaries did not go away. Amar Bose vividly recalls the hush-hush meetings in his house and the visit by a person who had escaped the horror of Jalianwala Baug. The stories of British atrocities, which he heard from this visitor as well as from others, have left an indelible impression on him even 60 years later.

Bose's childhood in Philadelphia was not easy either. One pictures the deep south of US as the seat of racism and bigotry, but during the '30s and '40s, right in Philadelphia, the home of Bill of Rights, the Boses had to suffer intense racial discrimination and humiliation. "Nobody would rent a house for us. We had to send my mother house hunting. Every time we used to enter a restaurant we would keep on waiting and nobody would serve us. Finally my father would call the manager, the whole restaurant would suddenly fall silent and father would make a short speech: 'Sir, we are good enough to cook and wait and serve you. We are good enough to die for this country in the wars, but we are not good enough to pay and be served. Why is that?' Obviously, it was largely rhetorical and used to have no effect on the proprietor. We all used to then stand up and leave the place. My father never tried to say that he was not an African-American but an Indian. When I met Bill Cosby - he is also from Philadelphia - he said: 'What do you know about .racism? You grew up on the other side of the railway tracks.' I said, just hold on, and told him a few stories," reminisces Bose. "One cannot for­get that things were not as they are now. But all said and done, as far as recognising talent for what it is, there is no country like the US."

Bose showed a penchant for engineering pretty early in his childhood. He could not afford toys but he learnt to repair toy trains and started earning a little pocket money at the age of 13. During World War II, he started repairing radio sets and developed the largest network of radio repairs through small advertisements placed in different stores in Philadelphia. His brilliance in academics led to admission in MIT and later BS (1952), MS (1952) and DSC (1956) from the same institution. His actual thesis advisor was the legendary Norbert Wiener, but since Wiener was in Math­ematics department and Bose was registered in Electrical Engineering, another advisor Dr Y.W. Lee nominally filled in as his advisor.

After he finished his doctoral thesis and was waiting for an appointment in the EE department at MIT, for a faculty position, he got a Fullbright Fellowship. He chose to visit the National Physical Laboratory, Delhi and lecture on Sta­tistical Communication Theory, which was just being developed in the world. Since there was a month to leave for Delhi, Bose had nothing better to do and bought a so-called hi-fidelity system after checking out its technical specs. But when he played it at home he was terribly disappointed. Since he did have some free time on his hands, he decided to get to the bottom of the audio sys­tem. This led to mathematical calculations, redesigning electronic circuits and conducting actual experiments on people to see what they find pleasing to listen to. Then just before he went to Delhi, the chairman of the EE depart­ment casually mentioned, when Bose was corning out of the pool, that when he came back from Delhi, he would be given office and lab space. "I could not believe it. The uncertainty was over just like that, he had confirmed my appointment at MIT," recalls Bose. His days at NPL with its illustrious director, K.S. Krish­nan, a few lectures at the Indian Statistical Institute and discussions with P C Mahalnobis, a giant in statistical theory, are etched indelibly in Bose's mind.

After he returned to MIT from Delhi, the acoustics experiments were carried on in a corner of the lab as a skunk project. Finally, in 1964, he decided to commer­cialise his research and set up Bose Corporation. His first employee and the only one for more than a year, was Sher­win Greenblatt, a former student of Bose, who is now the company's president. MIT encouraged Bose to set up the company while continuing as faculty member of MIT. Till today, Bose teaches at MIT part-time and his course on psy­cho-acoustics - an area in which he holds many patents ­is one of the most popular electives there.

Bose holds the company 100 per cent. When asked why he has not taken it public he said: "As far as employees are concerned, we pay them top­ of-the-line salaries as deter­mined every year by an outside consultant, so they do not feel the absence of stock options. I myself don't need the cash. In fact, every dollar of profit made in the company has been ploughed back. Moreover, taking it public will mean others telling us how to spend our dollars in research, whereas some of the research pro­jects we are working on will take decades and some may not even be completed. I am sure we could not have taken up such projects if we were not free to do what we want to."

Clearly, knowledge creation is what excites Bose. We could see that in the sparkle in his eyes and the alacrity with which he jumped up to explain technical points about wave guides, normal modes and spherical speakers or a subtle point about non-linear systems. But this acade­mic engineer has taken up commercial challenges as intellectual challenges and either licked the competition or created totally new technologies. The way he conquered the Japanese market is an abject example to American corporations who constantly wring their hands about 'fortress Japan'. When he found that passenger cars were being given lousy audio systems, he studied the interior of every car model and designed the audio system for each interior. He spent over $13 million on R&D before he could sell a single system to GM. Today he occupies the throne in car audio market with Mercedes Benz, Accura, GMC, Nis­san, Mazda, Audi, Cadillac, Infiniti, Oldsmobile and Ponti­acs flaunting custom-made Bose systems. His latest product, which has taken American homes by storm, is an ordinary alarm clock radio, with a CD player in it. Usually alarm clocks are considered a necessary evil in a bedroom. One feels like throttling them early in the morning, but to the owners' surprise Bose wave radio incorporated the new wave guide technology and reproduced sound as well or better than the much larger and more expensive audio sys­tems in the drawing rooms. When Bose realized that retail­ers may not do justice to this product, he directly sold it to consumers and made it a great success.

To use a cliché, Amar Bose is 71 years young. He simply oozes energy, visibly cringes if anybody calls him an icon but jumps up to the blackboard and waves his hand all over the room if you discuss physics.

His two grown-up children have clearly shown no intention to run their father's business. Son Vanu 35, an MIT alumnus himself, has an IT company which is selling the concept of Software Radio and daughter Maya, 34, is a chiropractor.

When told that his systems are very popular among the audio cognoscenti in India, his eyes go damp and he says: "I wish my father were here to see it".

Nuclear Engineering--PHWR

BUSINESS INDIA, October 7-20. 1996

Nuclear Heart Transplant

The heart of the 16-year-old Rajasthan-II reactor is being removed and replaced by a more robust brand new one, in a marvel of nuclear engineering

Shivanand Kanavi

In 1967, when Dr Christiaan Barnard conducted the world's first successful human heart transplant in South Africa, he created history. The engineers of Nuclear Power Corporation (NPC) are carrying out another type of heart trans­plant at Rawatbhatta, by changing the coolant channels of the nuclear power reactor. Thereby, they hope to extend the life of the Rajasthan Atomic Power Sta­tion-II (RAPS-II) by roughly 30 years.

On successful completion of the job to take roughly three years, NPC would have also mastered a new proprietory technol­ogy, developed indigenously at a highly competitive price. Thereby posing seri­ous competition to the Canadians in the international reactor services market for Pressurised Heavy Water Reactors (PHWR).

Nuclear heart surgery involves a great deal of analysis, design, precise planning, skill as in human heart surgery and in addition great radiation risk too, if mis­handled. Hence, to appreciate the com­plexity of the operation, it will help to know how the workhorse of the Indian nuclear programme - the 210 MW PHWR works.

PHWR produces power by bombarding neutrons on natural uranium (99.3 per cent U238 and 0.7 per cent U235). The right neutron speed can split the uranium nucleus into two nearly equal halves, releasing energy and more neutrons than consumed in fission. The released neutrons are slowed down through a series of collisions with deuterium in heavy water without being absorbed, much like a sprinter is slowed down while passing through a crowd.

Ordinary water is a compound of hydrogen and oxygen, whereas heavy water is made up of deu­terium - a heavier isotope of hydrogen - and oxygen. The resulting compound is about 10 per cent heavier than ordinary water and hence the name. While ordinary water absorbs neu­trons thereby stopping the reaction, its heavier cousin does not do so. This prop­erty of heavy water makes it a good 'moderator'.

With more neutrons released than consumed by fission, a chain reaction sets in. Neutron absorbers like cadmium are used to strike the right balance between neutron release and absorp­tion rates, thereby prevent­ing a run away reaction leading to a nuclear explo­sion, while still sustaining enough of the reaction for power production.

Uranium mined by the Uranium Corporation at Jaduguda, Bihar and converted into 'yellow cake' is refined and converted into fuel bundles by the Nuclear Fuel Complex at Hyderabad. These fuel bundles are placed in coolant channels made of zirconium alloy which is almost transparent to neutrons. Pres­surised heavy water flows through the coolant channels and carries away the heat produced during nuclear fission. The hot heavy water at 270 degree celsius then transfers the heat to ordinary water in the steam generator. The steam thus produced then turns a conventional tur­bine-generator producing electricity.

The coolant channels are housed in a cylindrical steel vessel called the calan­dria. The calandria contains heavy water which acts as a moderator. The two ends of calandria are cov­ered by nearly a metre thick steel end shields housing a lattice of 306 coolant channels. The entire reactor is inaccessible and is in a metre thick con­crete vault, once the reactor starts up. All defuelling and fuelling has to be done through remote control. Thus unlike a conventional power station, any minor repair later, is a herculean task and needs careful planning and execution.
The boiling water reactor technology developed in the US by General Electric, Westinghouse, etc, needs enriched ura­nium requiring expensive enrichment processes. The PHWRS developed by Canada as pointed out earlier, use natural uranium. Moreover, Canada offered the technology at very attractive terms and even showed willingness to involve Indi­ans to some degree in developing and sta­bilising the design.

However, Pokharan in 1974, exploded all international nuclear co-operation with India. Canadians even abandoned RAPS-IT halfway. There was an embargo placed on all nuclear-related sales to India and every wheel had to be painstak­ingly reinvented by the Department of Atomic Energy and then taught to the Indian industry.

Today a veritable nuclear industrial infrastructure has been built. Industries like L&T, Walchandnagar, Bhel, Machine Tool Aids & Reconditioning, KSB Pumps, etc, are doing high precision fab­rication of end shields, calandrias, coolant channels, fuelling machines, steam generators, pumps and other sub­systems for the PHWRS.

The technological embargo, however, led to another serious problem. There was a fracture in a coolant channel in the reac­tor at Pickering Unit-II, Canada, in August 1983. Such a fracture leading to what nuclear engineers call a 'loss of coolant accident' is every reactor opera­tor's worst nightmare, as it might lead to 'core melt down' and a serious nuclear accident as in the Three Mile Island in the US or even worse. Some readers might also remember the Hollywood version of loss of coolant accident in Jane Fonda & Jack Lemon’s China Syndrome.
Fortunately, the loss of coolant in a PHWR does not lead to a core melt down. It is one of the inherent design superiori­ties of PHWR. But due to the embargo, Indians, who were using the same design in Rajasthan, were denied detailed knowledge of the accident, its cause and the remedial actions taken. They had access only to some general discussion in international conferences.

While some problems are expected due to ageing, after 30 years of run­ning the reactor, it was significant that the accident at Pickering occurred after only ten full operating years. The accident at Pickering, however, alerted Indians and some design modifications were made in all reactors after Rajasthan I & II and Madras I &II. In Kakrapara II, Kaiga-I &II and RAPS-III & IV a new zirconium alloy with an addition of 2.5 per cent niobium was used for coolant channels. The new alloy has vastly better characteristics than the earlier zircolloy-2 and should give no problem for 30 years.

However, such a coolant channel frac­ture could still occur at RAPS-I&II and MAPS-I&II, which use the old design. Hence they were closely monitored. To take remedial action, NPC set up a core group of engineers called Coolant Chan­nel Replacement Group to work out the entire details of an exercise to replace all the 306 coolant channels in the older designs starting with RAPS-II.

NPC engineers in Bombay and on site at Rawatbhatta have risen up to the task admirably and are today probably the most excited group in the entire DAE. In fact, V.K. Chaturvedi, the project director at Rawatbhatta has become a legend of sorts with his hands-on leadership. The best place to meet him is not his residence or office but the reactor site itself where he is found at all odd times.

In a record time of four months they have already cut and removed all the 306 coolant channels at RAPS-II and sealed the highly radioactive channels in a spe­cially constructed underground concrete mausoleum. According G.R. Srinivasan, director environment and public aware­ness at NPC, "The task has been carried out with a surprisingly low radiation exposure to personnel, well below safe levels, a fact which has amazed many."

Canadians had done the same, taking longer time and using advanced remote controlled equipment. It was rumoured internationally that either Indians cannot develop the technology or they will use crude and callous methods and expose their personnel to heavy doses of radiation. The achievement of the coolant channel replacement group led by R.C. Arya, director, reactor services and the on-site team led by Chaturvedi, increases in significance in this background.

If everything goes well then even fit­ting the new channels will be finished between December 1996 and September 1997. They would then have completed the entire project, from defuelling to handing over for start-up within 36 months, as opposed to 44 months taken by the Canadians.

This has commercial implications. The Canadians spent nearly $300 million whereas the Indians would spend $72 million to do the same. With PHWRS operating in South Korea and Argentina there is a good opportunity for the Indians to offer coolant channel inspection and replacement services at highly competi­tive rates.

The genesis of the coolant channel problem, lies in a confluence of factors. These pressurised tubes are separated from the calandria tubes by a concentric gap of 8 mm. The separation is main­tained using two garter springs kept at certain intervals. While the heavy water in coolant channels is at about 270 degree celsius, the calandria tubes are sur­rounded by the moderating heavy water at 70 degree celsius. Due to vibration within the tube the springs in the old design, tend to move from their positions leading to lack of support at certain portions of the coolant channel. The weight of the fuel bundles (uranium is heavier than gold!), thermal stresses and irradiation, lead to sagging of the coolant channels.

In the extreme conditions existing inside the coolant channel, minute amounts of heavy water break into deu­terium and oxygen. Normally zirconium forms an oxide layer by combining with oxygen while deuterium is released as gas. But tiny amounts of deuterium are also absorbed by zirconium forming a brittle 'hydride'. This deuterium pie is so slow that one need not worry about it for 30 years.

However, if the sag in the coolant channel leads to contact with the colder calandria tube then the cold spot devel­oped at the point of contact leads to accu­mulation of deuterium in the zircolloy at that point. This can lead to blistering and even a possible fracture, as it happened in Pickering Unit-II. Niobium-stabilised zirconium however has much less deu­terium pick up and better thermal creep characteristics. Thus the replacement of old channels by the new niobium-sta­bilised zirconium alloy channels with four tight fitting garter springs, which will not move easily, will prevent sagging and add another 30 years to reactor life provided all other systems continue to work well.

Nuclear Power Corporation today has under 2,000 MW of gen­erating capacity. For NPC to gener­ate funds through internal accruals for further expansion it needs a minimum of 5,000 MW of generat­ing base. At a crucial phase in NPC'S evolution, funds from the Central government have slowed down to a trickle with extreme short sightedness. With no interna­tional institution like World Bank ready to fund nuclear power, the NPC has been left high and dry. Since building a new power plant is always very expensive, every megawatt squeezed out of existing old plants at a marginal cost, is heavenly light for NPC and a power-starved India.

Shishunal Sharieff Saheb

The Weekend Observer, 25 July 1992

Kabir of Karnataka

The nineteenth century saint Sharieff Saheb of Shishunal, though born in a devout Muslim family was well versed in Veerashaivism and had a Brahmin, Govinda Bhatt as his guru. He left a legacy of hundreds of mystic poems in Kannada and more importantly a tradition of samanvaya—harmony.

Shivanand Kanavi

SHARIEFF in Persian means one with lofty ideals and high culture. Perhaps with prescience Imamsaheb, a humble and devout peasant, and his wife named their belated off spring thus. Born in Shishunal a small village in Dharwad district of Karnataka, in 1819, Sharieff Saheb in his seventy years of life ingested all that is lofty in the culture of Karnataka. Its tradition of harmony, of the protestant Shaivaite culture of the Veerashaiva saints of twelfth Century, of the Vaishnavaite dasas of sixteenth century and a great poetic heritage compris­ing 'high' poetry of Pampa and centuries of oral folk poetry of Sarvajnya and others. The first available work on poetics and criticism in Kannada belongs to the tenth century.
Sharieff left behind him hundreds of poems expressing his spiritual anguish, critical and ecstatic comments on different faiths and spiritual contempor­aries and most importantly his message of different spiritual paths leading to the same end. He did not write them down. Those who heard them have jotted down a few for posterity but most of them are still sung in the villages of Karnataka purely based on the memory of a people.
Sharieff spent his childhood surrounded by the love and affection of his parents and discussions with his father on the importance and meaning of Namaz, nature of Allah and whether he is listening to our prayers only in a mosque, etc.
After the fall of the Peshwas in 1818, the East India Company amalgamated this region into the Bombay presidency. One thing that was common to all these rulers was the utter neglect of education in the region. The burden of mass education was largely borne by schools run by Veerashaiva religious institutions.
Imamsaheb entered his son in one of them. Seeing his eagerness the teacher introduced him to the vast Veerashaiva literature. At this stage Sharieff showed interest in Vedic studies and his father entered him in a Vedic school run by Govinda Bhatt in a temple in a near by village where he was taught Vedas, Upanishads, Smriti, Ramayan-Mahabharat, Puranas etc. Later he independently stud­ied the Koran and the Hadith.
Even though equipped with such a rich background in religious studies at a tender age Sharieff was a normal young man actively interested in the activities in his village and surroundings.
Taking advantage of a new scheme of partial support for local schools, announced by the newly formed Board of Education in the -Bombay presidency, Sharieff successfully mobilised the village elders to start a school in the backward Shishunal. He taught all that he had learnt from various teachers in his childhood to the children of his village. Soon he took initiative in starting similar schools in the surrounding vil­lages and became popular as 'Sharieff Master’.
In his reformatory enthusiasm one of the cultural events that came to his notice was the celebration of Mohurram in the area. It had two characteristics. Firstly it was celebrated by the two major local communities, Muslims and Veerashaivas, to­gether in very real display of brotherhood. Secondly the par­ticipants often used to forget the religious significance Mohurram as homage to the martyrdom of Hazrat Hussain and his followers in Karbala nearly fourteen centuries ago at the hands of the tyrant Yezid. Instead, it used to degen­erate into raucous revelry.
Sharieff got down to changing the situation. He wrote the story of Karbala in a popular folk form riwayat and choreographed a group dance to go with it using the folk form of hejjemela. His riwayats became immensely popular though at times he cried in anguish in his poems that people still did not understand the significance of Mohurram.
When he came of age, his parents arranged his marriage with a girl, Fatima, from a nearby village. The couple lived happily and soon there arrived a baby girl. Sharieff lost himself in domestic bliss and responsi­bility of farming to provide for his family.
But great distress soon befell him in wave after wave. First his parents died of old age. Then his dear daughter fell victim to cholera. This was followed by the death of his heart broken wife.
Now Sharieff was left with no one dear in his life. Shaken by his misfortune, he reflected on the fragility of human life. His early interest in spiritual questions led him to seek a way out of the misery through a spiritual pilgrim's journey that took him back to his teacher of childhood, Govinda Bhatt. Govinda Bhatt was delighted to accept him as his shishya, despite acute peer pressure and threats of excommunication.
Guided by his guru, Sharieff soon started having mystical experiences. He sought wisdom and mysticism wherever it came to his notice among his contem­poraries in North Karnataka. Along with spiritual wisdom came the unstoppable flow of religious poetry, which to this day is sung in the villages of Karnataka.
In simple rustic Kannada, Sharieff commented on the hy­pocrisy among followers of vari­ous religions who do not under­stand the tenets of their religion but engage in empty rituals while leading lives of deceit and hedonism. He wrote number of poems on the need for self restraint and detachment.
At the ripe age of seventy when he had spent his life in progressing poverty and hunger Sharieff decided to end it in a yogic fashion and surrounded by people he went into trance and never regained conscious­ness.
On his death there arose a dispute regarding his funeral, both Hindus and Muslims claim­ed him as their own. Finally realising the message of his life, both communities jointly organised it. There was reading of the Koran as well as Hindu scriptures. There was Allah ho Akbar as well as Har Har Mahadev. Since then his grave is visited by both communities. While on the left Muslims per­form Namaz, on the right Hindus perform pooja and arati.
People come in thousands to pay respects to this Kabir of Karnataka. On new moon days and Mondays during the month of shravan and during the relig­ious fairs in his honour, his songs are sung by numerous folk singers.
In the cool shade of neem trees and fragrant jasmine the spirit of Sharieff, the spirit of communal harmony and toler­ance flourish.

A Tribute--Stephen Hawking turns 50

The Weekend Observer, 22 February, 1992
Hawking, God and the Big Bang

Shivanand Kanavi

Physicist Stephen Hawking, well known for his contribution to the theory of black holes and even better known as a science communicator, just completed fifty. Crippled by ALS or motor neuron disease that has confined him to the wheelchair, Hawking has lately lost his ability to speak and write as well and communicates through a computer which synthesises speech and helps him write. Though he is being helped by the wonders of the micro-chip, it should be remembered that he was given two years to live, by doctors, 29 years ago! This brilliant physicist completing 50 is a celebration of human grit and an occasion of joy for all.
Hawking’s “A Brief History Of Time”, an international best seller, is a model of science communication. He conveys in the book, the evolution of man’s understanding of the macrocosm and the microcosm in lucid terms and addresses himself to the questions “Where did the universe come from? How and why did it begin? Will it come to an end? If so, how?” On his fiftieth birthday, the ultimate tribute has been paid to Hawking’s communicating abilities. Now, nestling along side paper back pulp from Jackie Collinses, Jeffrey Archers, Sidney Sheldons et al, one can find, “A Brief History of Time” on the pavements of Mumbai’s Flora Fountain.
While discussing the present day understanding of universe, its structure, evolution and ori­gin Hawking examines many times the role of God, if any, in it. Till the nineteenth century all things heavenly: sun, moon planets, stars and all things earthly: animals, plants and earth itself were looked upon as given, and not as products of a long evolutionary pro­cess. Not that there was no speculation regarding it, but there was no scientific evidence for it. In the mid nineteenth century, evidence accumulated towards Biological and Geological evolution which were a big blow to scriptures of various religions that had spoken about genesis of earth and creation of all plants and animals by God, more or less suddenly. To allow for some historical development of mankind the Church in Europe had even fixed 4004 BC as the date of creation. However in the 19th century, scientific evidence showed up a time lapse of millions of years for the evolution of different species of plant and animal life including man, showing natural laws in action rather than the hands of a creator.
Stellar evolution from gaseous Nebulae had been hypothesised by the German philosopher Immanuel Kant in the 18th century, however there was no direct evidence of evolution of universe itself. It was the discovery by Edwin Hubble in 1929 that galaxies are moving away from each other that led to the acceptance of the theory of expanding universe. But an expanding universe presupposed that matter and energy were expanding in all directions after originating at a point. Thus the name Big Bang was given to a theory that explained the expansion of universe, as due to the very creation of universe at a point billions of years ago. Then came in 1965 the discovery by Penzias and Wilson that weak electromagnetic radiation filled the space and it was not coming from any source, but it was just there, in the background! This is known as Cosmic Microwave Background Radiation. They received Nobel Prize for its discovery in 1978. Since Big Bang theory had predicted that some of the energy released during the creation would still be around, as weak electromagnetic radiation, this discovery thereby established the Big Bang theory.
According to the "hot Big Bang model", the history of universe in brief runs like this: at the Big Bang itself the universe is thought to have had zero volume and so to have been infinitely hot. But as the universe expanded, the tempera­ture of radiation decreased. One second after the Big Bang the temperature was ten thousand million degrees. This is about a thousand times the temperature at the centre of the Sun. At this time the universe contained mostly photons - packets of electromagnetic energy, electrons and neutrinos -extremely ­light and weakly interacting particles and their corresponding anti-particles viz. positrons and anti-neutrinos, together with some protons and neutrons.
About hundred seconds after the Big Bang, the temperature would have fallen to a billion degrees centigrade. At this temperature protons and neutrons would fuse to produce Deuterium or heavy Hydrogen nuclei, which in turn will fuse to form Helium nuclei and small amounts of Lithium and Beryllium.
After that, for another million years universe would have just expanded. Once the temperature had dropped to a few thousand degrees, electrons and nuclei would start combining to form atoms. In regions where matter was denser than the average, gravity would start coming into play. Thereby leading to the formation of galaxies, like our own Milky Way.
As time went by, Hydrogen and Helium gas in the galaxies would break into small clouds that would collapse under their own gravity and start the formation of stars. As these clouds contracted, temperature of the gas would increase until it became hot enough to start nuclear fusion reactions. Some would use up their Hydrogen in only about 100 million years, contract further and convert Helium into heavier elements Carbon and Oxygen. Then the central region of the star would collapse to a super dense Neutron Star or even a Black hole & the outer cloud would be blown away in a Super Nova explosion. Our own sun is a second or third generation star, formed some 5 billion years ago out of the debris of Super Novae. Small amounts of heavier elements in the debris collected together to form the planets round the sun.
This extremely brief and sketchy outline of evolution of the universe, might have many gaps but generally seems to agree with all observational evidence, that we have today.
What happened at the Big Bang, or before it? Physicists say these questions cannot be answered in the present model. Big Bang represents a critical point in the theory. At that point certain quantities like density become infinite, certain others like volume become zero, or in mathematical terms, Big Bang represents a singularity in theory. For the same reason we cannot extrapolate the model backwards in time to the period before Big Bang. Though the Big Bang model satisfactorily explains the observed data so far, scientists do not like infinities appearing in theory. Thus, attempts are on, to avoid the Big Bang singularity. Hawking himself has worked on one such attempt where there is no singularity. But in this model we have to give up our present concept of time. Here, time has to be treated as any other space dimension or in mathematical terms we have “Euclidean space-time”, where as theories like relativity treat time as different from space.
So far, the predictive capacity of various cosmological models is extremely limited. This is natural, when even basic data regarding distances of various galaxies from ours, the rate of expansion of the universe and the total matter in the universe etc. is still not available. Any way, till more observational data is available, may be from the Hubble Space Telescope launched through the Space Shuttle we have not much to chose from one model from the other. They explain the expansion of the universe and the left over, premordial Cosmic Microwave Background Radiation.
As we see, there is little scope for God in this scheme of things. In fact, once the scientists took on the job in earnest of observing nature and discovering laws of nature, they rejected the view that every thing goes according to the leela of an all powerful, eternal, all perfect, unlimited God. The laws of nature according to which matter seems to interact and develop, our understanding of which is developed and improved upon as new data and new phenomenon are found, seem to circumscribe the “unlimited” “all powerful God”.
Thus started the view that God started off everything, and decreed the laws, which, then took over the running of the universe. Many scientists in Europe accepted this type of eclectic outlook known as deism. Issac Newton was one of them. He discovered the law of gravitation and described planetary motion accurately but assumed that God started it all or in philosophic terms God was the “efficient cause” of the world, or the “first impulse”. Later developments in science described the evolution of the earth, the biological world, the origin of species, and even gave insights into bio-molecular origin of life itself. Thus there developed an agnostic view among most scientists who refused to take a stand on existence of God, but said “we don’t have any proof of his existence or non-existence”. The famous French mathematician Laplace, is supposed to have presented the theory of solar system in the court of Napoleon Bonaparte and then when Napoleon noticed the absence of divine intervention in Laplace’s theory, he is said to have boldly replied “but I have no need for that hyopothesis”!
Strangely the evidence in fa­vour of Big Bang, has given fillip to the religious minded, who say "God created the universe at the Big Bang!”

Book Review: Communism 1989-1991 --By Hardial Bains

The Weekend Observer, ‘Books’, 15 February 1992

Darkness before a new dawn

Shivanand Kanavi

“Socialism came into being despite all the objections of the old world, when it was ushered in, it was contested, and finally socialism went into retreat. Inspite of the clouds, we still glimpse the light of the people’s aspirations: their deep longing for democracy. All those who are calling for their political rights and economic well-being, opposing the use of force in the solution of conflicts between nations, and demanding the protection of environment, cannot be part of the night.”

With these optimistic words the author Hardial Bains starts his book Communism 1989-1991.

The two years 1989-1991 have been tumultuous. They have witnessed the collapse of socialism in Eastern Europe and Soviet Union: even the state of USSR has collapsed, and has been replaced by CIS, while some former constituents have seceded; the Cold War has ended. These developments which have had profound effect on the whole world are bound to have deep effect on the Communist movement itself.

At this juncture a book written by a person who for the last over twenty years has been the first secretary of the Communist Party of Canada (Marxist-Leninist), naturally arouses a lot of interest, Though he has been a prolific writer, to the Indian readers he is mainly known through his earlier book, Call of the Martyrs – On the Present Crisis in India and the Situation in Punjab (1985). It was not only an important contribution to the analysis of the Punjab problem but also contained a very interesting Marxist evaluation of the Bhakti movement, as a revolutionary democratic movement with a religious form.

The author says he was dissatisfied with the Social Democratic approach which considers socialism as merely state intervention in the economy, achieved by constituting the government through the electoral process and without touching capitalism in anyway. He is also dissatisfied with the pro-Soviet parties which presented Soviet Union as the model of socialism even when it was oppressing its own working people and the nations within its boundaries, and had turned its allied countries into satellites. They in fact revised the principle that each country must chart its own course and instead said other countries had only “limited sovereignty”. Such parties when asked about problems in domestic or foreign policy of the USSR at best said, “What problems? Or worse, called you “anti-Soviet”, “CIA agent”, etc. Many such parties, especially in the West, have gone over from ‘because it is socialism it can have no problems’ position to ‘because so many problems emerged, it is socialism which does not work’!

The author’s view is that while the rapid development in USSR, in the economy, industry, agriculture, science, technology, fine arts etc. in just two decades after the revolution was a great defeat of fascism, and support for the anti-imperialist struggles all over the world, which inspired such non-communists as our own Jawaharlal Nehru and Rabindranath Tagore to speak of the “dawn of a new civilisation”. However, in the post- World War II years complacency, and bureaucracy set in, socialism went into retreat. While Lenin, Stalin, Khruschev and his successors including Gorbachev played important positive or negative roles in these developments; the author does not get involved in either glorifying or decrying any individual but tries to find objective reasons for the retreat of socialism.

The author calls for a serious summation of the experience of socialism and highlights the need to work out solutions to the problems facing us, whether it is recurring recession, degradation of the environment, democracy, or use of force in resoling international problems. In the changes that have taken place in Eastern Europe, he sees the democratic urge of the people of these countries, as the motive force, and though their struggles are being hijacked by demagogues who are pushing the Western narrow minded formula that ‘Democracy = Free Market Economy + Multi-party Elections’ in the most undemocratic way; he feels that the measures being taken now will not satisfy either the material or political demands of the people.

He makes a very important point, “the debate should be how a problem is to be solved, not which system is best. The latter would be a debate of which the working people have no direct experience. The problems they face are quite well known to them, while the debate about systems will be abstract”. The latter type of debate will also keep tensions brewing, and can lead to war as well. He gives the example of the Gulf War, where the immediate task was to oppose the use of force in settling the problem. But what was said and done was that: “I don’t like such and such system. Let’s go and blast that country.” There was no concern for war and it simply became how best to blast the place!

Essays like ‘Matter‘ stand out for their readability despite treating such a complex philosophical subject as the relationship between matter and consciousness. The author has developed, a dialectical style so to say, where he starts with an idea moves away from it and comes back to it again and again, and each time he has taken the reader forward. Today, when instant pop-history is passed off as ‘Current History’, this book is one of the few exceptions of serious analysis.

The jacket design is tastefully done, depicting a Canadian wild flower which grows and glows with intensity in inhospitable terrain.

While the book does not answer many of the questions the author has raised, it is a welcome contribution to the effort to overcome the present theoretical impasse.