Optical technology: Lighting up our lives
“Behold, that which has removed the extreme in the pervading darkness, Light became the throne of light, light coupled with light"
—BASAVANNA, twelfth century, Bhakti poet, Karnataka
“A splendid light has dawned on me about the absorption and emission of radiation.”
—ALBERT EINSTEIN, in a letter to Michael Angelo Besso, in November 1916
“Roti, kapda, makaan, bijlee aur bandwidth (food, clothing, housing, electricity and bandwidth) will be the slogan for the masses.”
—DEWANG MEHTA, an IT evangelist
It is common knowledge that microchips are a key ingredient of modern IT. But optical technology, consisting of lasers and fibre optics, is not given its due. This technology already affects our lives in many ways; it is a vital part of several IT appliances and a key element in the modern communication infrastructure.
Let us look at lasers first. In popular perception, lasers are still identified with their destructive potential—the apocalyptic ‘third eye’ of Shiva. It was no coincidence that the most powerful neodymium glass laser built for developing nuclear weapon technology at the Lawrence Livermore Laboratory in the US (back in 1978) was named Shiva.
Villains used lasers in the 1960s to cut the vaults of Fort Knox in the James Bond movie, Goldfinger. In 1977 Luke Skywalker and Darth Vader had their deadly duels with laser swords in the first episode of Star Wars. As if to prove that life imitates art, Ronald Reagan poured millions of dollars in the 1980s, in a ‘ray gun’, a la comic-strip super-hero stories, with the aim of building the capability to shoot down Soviet nuclear missiles and satellites.
THE BENIGN THIRD EYE
In our real, daily lives, lasers have crept in without much fanfare:
• All sorts of consumer appliances, including audio and video CD players and DVD players use lasers.
• Multimedia PCs are equipped with a CD-ROM drive which uses a laser device to read or write.
• Light emitting diodes (LED)—country cousins of semiconductor lasers—light up digital displays and help connect office computers into local area networks.
• LED-powered pointers have become popular in their use with audiovisual presentations.
• Who can forget the laser printer that has revolutionised publishing and brought desk top publishing to small towns in India?
• Laser range finders and auto-focus in ordinary cameras have made ‘expert photographers’ of us all.
• The ubiquitous TV remote control is a product of infrared light emitting diodes.
• The bar code reader, used by millions of sales clerks and storekeepers, and in banks and post offices, is one of the earliest applications of lasers.
• Almost all overseas telephone calls and a large number of domestic calls whiz through glass fibres at the speed of light, thanks to laser-powered communications.
• The Internet backbone, carrying terabits (tera = 1012, a million million) of data, uses laser-driven optical networks.
C.K.N. Patel won the prestigious National Medal of Science in the US in 1996 for his invention of the carbon dioxide laser, the first laser with high-power applications, way back in 1964 at Bell Labs. He says, “Modern automobiles have thousands of welds, which are made by robots wielding lasers. Laser welds make the automobile safer and lighter by almost a quintal. Even fabrics in textile mills and garment factories are now cut with lasers.”
Narinder Singh Kapany, the inventor of fibre optics, was also the first to introduce lasers for eye surgery. He did this in the 1960s along with doctors at Stanford University. Today’s eye surgeons are armed with excimer laser scalpels that can make incisions less than a micron (thousandth of a millimetre) wide, on the delicate tissues of the cornea and retina.
LASER BASICS
So what are lasers, really? They produce light that has only one wavelength and a high directionality and is coherent. What do these things mean, and why are they important? Any source of light, man-made or natural, gives out radiation that is a mixture of wavelengths—be it a kerosene lantern, a wax candle, an electric bulb or the sun. Different wavelengths of light correspond to different colours.
When atoms fly around in a gas or vibrate in a solid in random directions, the light (photons) emitted by them does not have any preferred direction; the photons fly off in a wide angle. We try to overcome the lack of direction by using a reflector that can narrow the beam, as from torchlight, to get a strong directional beam. However, the best of searchlights used, say, outside a circus tent or during an air raid, get diffused at a distance of a couple of miles.
The intensity of a spreading source at a distance of a metre is a hundred times weaker than that at ten centimetres and a hundred million times weaker at a distance of one kilometre. Since there are physical limits to increasing the strength of the source, not to mention the prohibitive cost, we need a highly directional beam. Directionality becomes imperative for long-distance communications over thousands of kilometres..
Why do we need a single wavelength? When we are looking for artificial lighting, we don’t. We use fluorescent lamps (tube lights), brightly coloured neon signs in advertisements or street lamps filled with mercury or sodium. All of them produce a wide spectrum of light. But a single wavelength source literally provides a vehicle for communications. This is not very different from the commuter trains we use en masse for efficient and high-speed transportation. Understandably, telecom engineers call them ‘carrier waves’. In the case of radio or TV transmission, we use electronic circuits that oscillate at a fixed frequency. Audio or video signals are superimposed on these carrier channels, which then get a commuter ride to the consumer’s receiving set.
With electromagnetic communications, the higher the frequency of the carrier wave, the greater the amount of information that can be sent piggyback on it. Since the frequency of light is million times greater than that of microwaves, why not use it as a vehicle to carry our communications? It was this question that led to optical communications, where lasers provide the sources of carrier waves, electronics enables your telephone call or Internet data to ride piggyback on it, and thinner-than hair glass fibres transport the signal underground and under oceans.
We have to find ways to discipline an unruly crowd of excited atoms and persuade them to emit their photons in some order so that we obtain monochromatic, directional and coherent radiation. Lasers are able to do just that.
Why coherence? When we say a person is coherent in his expression, we mean that the different parts of his communication, oral or written, are connected logically, and hence make sense. Randomness, on the other hand, cannot communicate anything. It produces gibberish.
If we wish to use radiation for communications, we cannot do without coherence. In radio and other communications this was not a problem since the oscillator produced coherent radiation. But making billions of atoms radiate in phase necessarily requires building a new kind of source. That is precisely what lasers are.
Like many other ideas in modern physics, lasers germinated from a paper by Albert Einstein in 1917. He postulated that matter could absorb energy in discrete quanta if the size of the quantum is equal to the difference between a lower energy level and a higher energy level. The excited atoms, he noted, can come down to the lower energy state by emitting a photon of light spontaneously.
On purely theoretical considerations, Einstein made a creative leap by contending that the presence of radiation creates an alternative way of de-excitation, called stimulated emission. In the presence of a photon of the right frequency, an excited atom is induced to emit a photon of the exact same characteristics. Such a phenomenon had not yet been seen in nature.
Stimulated emission is like the herd effect. For example, a student may be in two minds about skipping a boring lecture, but if he bumps into a couple of friends who are also cutting classes, then he is more likely to join the gang.
A most pleasant outcome of this herd behaviour is that the emitted photon has the same wavelength, direction and phase as the incident photon. Now these two photons can gather another one if they encounter an excited atom. We can thus have a whole bunch of photons with the same wavelength, direction, and phase. There is one problem, though; de-excited atoms may absorb the emitted photon, and hence there may not be enough coherent photons coming out of the system.
What if the coherent photons are made to hang around excited atoms long enough without exiting the system in a hurry? That will lead to the same photon stimulating more excited atoms. But how do you make photons hang around? You cannot slow them down. Unlike material particles like electrons, which can be slowed down or brought to rest, photons will always zip around with the same velocity (of light of course!)—300,000 km per second.
THE BARBERSHOP SOLUTION
Remember the barber’s shop, with mirrors on opposite walls showing you a large number of reflections? Theoretically, you could have an infinite number of reflections, as if light had been trapped between parallel facing mirrors. Similarly, if we place two highly polished mirrors at the two ends of our atomic oscillator, coherent photons will reflected back and forth, and we will get a sustainable laser action despite the usual absorptive processes.
At the atomic level, of course, we need to go further than the barber’s shop. We need to adjust the mirrors minutely so that we can achieve resonance, i.e., when the incident and reflected photons match one another in phase, and standing waves are formed. Lo and behold, we have created a light amplification by stimulated emission of radiation (laser).
In the midst of disorderly behaviour we can see order being created by a laser. Physics discovered that the universe decays spontaneously into greater and greater disorder. If you are a stickler, ‘the entropy—measure of disorder—of an isolated system can only increase’. This is the second law of thermodynamics. So are we violating this law? Are we finally breaking out of thermodynamic tyranny?
It should be noted, however, that the universe becomes interesting due to the creation of order. Evolution of life and its continuous reproduction is one of the greatest acts of creating order. However, rigorous analysis shows that even when order is created in one part of the universe, on the whole, disorder increases. Lasers are humanity’s invention of an order-creating system.
Charles Townes, a consultant at Bell Labs, first created microwave amplification through stimulated emission in 1953. He called the apparatus a maser. Later work by Townes and Arthur Schawlow at Bell Labs, and Nikolay Basov and Aleksandr Prokharov in the Soviet Union led to the further development of laser physics. Townes, Basov and Prokharov were awarded the Nobel Prize for their work in 1964. Meanwhile, in 1960, Theodore Maiman, working at the Hughes Research Laboratory, had produced the first such instrument for visible light—hence the first laser—using a ruby crystal.
Since then many lasing systems have been created. At Bell Labs C K N Patel did outstanding work in gas lasers and developed the carbon dioxide laser in 1964. This was the first high power continuous laser and since then it has been perfected for high power applications in manufacturing.
THE SEMICONDUCTOR REVOLUTION IN LASERS
What made lasers become hi-tech mass products was the invention of semiconductor lasers in 1962 by researchers at General Electric, IBM, and the MIT Lincoln Laboratory. These researchers found that diode devices based on the semiconductor gallium arsenide convert electrical energy into light. They were highly efficient in their amplification, miniature in size and eventually inexpensive. These characteristics led to their immediate application in communications, data storage and other fields.
Today, the performance of semiconductor lasers has been greatly enhanced by using sandwiches of different semiconductor materials. Such ‘hetero-junction’ lasers can operate even at room temperature, whereas the older semiconductor lasers needed cooling by liquid nitrogen (to around -77 0C). Herbert Kroemer and Zhores Alferov were awarded the Nobel Prize in physics in 2000 for their pioneering work in hetero-structures in semiconductors. Today, various alloys of gallium, arsenic, indium, phosphorus and aluminium are used to obtain the best LEDs and lasers.
One of the hottest areas in semiconductor lasers is quantum well lasers, or cascade lasers. This area came into prominence with the development of techniques of growing semiconductors layer by layer using molecular beam epitaxy. Researchers use this technique to work like atomic bricklayers. They build a laser by placing a layer of a semiconductor with a particular structure and then placing another on top with a little bit of cementing material in between. By accurately controlling the thickness of these layers and their composition, researchers can adjust the band gaps in different areas. This technique is known as ‘band gap engineering’.
If the sandwich is thin enough, it acts as a quantum well for electrons. The electrons confined in this way lead to quantum systems called quantum wells (also known as particle in a box). The gap in the energy levels in such quantum wells can be controlled minutely and used for constructing a laser. Further, by constructing a massive club sandwich, as it were, we can have several quantum wells next to each other. The electron can make a stimulated emission of a photon by jumping to a lower level in the neighbouring well and then the next one and so on. This leads to a cascade effect like a marble dropping down a staircase. The system ends up emitting several photons of different wavelengths, corresponding to the quantum energy staircase. Frederico Capasso and his team built the first such quantum cascade laser at Bell Labs in 1994.
Once a device can be made from semiconductors, it becomes possible to miniaturise them while raising performance levels and reducing their price. That’s the pathway to mass production and use. This has happened in the case of lasers too.
We can leave the physics of lasers at this point and see how lasers are used in appliances of daily use:
A bar-code reader uses a tiny helium-neon laser to scan the code. A detector built into the reader detects reflected light and the white-and black bars are then converted to a digital code that identifies the object.
A laser printer uses static electricity; that’s what makes your polyester shirt or acrylic sweater crackle sometimes. The drum assembly inside the laser printer is made of material that conducts when exposed to light. Initially, the rotating drum is given a positive charge. A tiny movable mirror reflects a laser beam on to the drum surface, thereby rendering certain points on the drum electrically neutral. A chip controls the movement of the mirror. The laser ‘draws’ the letters and images to be printed as an electrostatic image.
After the image is set, the drum is coated with positively charged toner (a fine, black powder). Since it has a positive charge, the toner clings to the discharged areas of the drum, but not to the positively charged ‘background’. The drum, with this powder pattern, rolls over a moving sheet of paper that has already been given a negative charge stronger than the negative charge of the image. The paper attracts the toner powder. Since it is moving at the same speed as the drum, the paper picks up the image exactly. To keep the paper from clinging to the drum, it is electrically discharged after picking up the toner. Finally, the printer passes the paper through a pair of heated rollers. As the paper passes through these rollers, the toner powder melts, fusing with the paper, which is why pages are always warm when they emerge from a laser printer.
Compact discs are modern avatars of the old vinyl long-playing records. Sound would be imprinted on the LPs by a needle as pits and bumps. When the needle in the turntable head went over the track, it moved in consonance with these indentations. The resultant vibrations were amplified mechanically to reproduce the sound we heard as music. Modern-day CDs and DVDs are digital versions of the old Edison’s phonograph. Sound or data is digitised and encoded in tiny black or white spots corresponding to ones and zeros. These spots are then embedded in tiny bumps that are 0.5 microns wide, 0.83 microns long and 0.125 micron high. The bumps are laid out in a spiral track much as in the vinyl record. A laser operating at a 0.780-micron wavelength lights up these spots and the reflected signal is then read by a detector as a series of ones and zeroes, which are translated into sound.
In the case of DVDs, or digital versatile discs, the laser operates at an even smaller wavelength, and is able to read much smaller bumps. This allows us to increase the density of these bumps in the track on a DVD with more advanced compression and coding techniques. This means we can store much more information on a DVD than we can on a CD. A DVD can store several GB of information compared with the 800 MB of data a CD can store.
A CD is made from a substratum of polycarbonate imprinted with microscopic pits and coated with aluminium, which is then protected by a thin layer of acrylic. The incredibly small dimensions of the bumps make the spiral track on a CD almost five kilometres long! On DVDs, the track is almost twelve kilometres long.
To read something this small you need an incredibly precise discreading mechanism. The laser reader in the CD or DVD player, which has to find and read the data stored as bumps, is an exceptionally precise device.
The fundamental job of the player is to focus the laser on the track of bumps. The laser beam passes through the polycarbonate layer, reflects off the aluminium layer, and hits an opto-electronic device that detects changes in light. The bumps reflect light differently than the rest of the aluminium layer, and the opto-electronic detector senses the change in reflectivity. The electronics in the drive interpret the changes in reflectivity in order to read the bits that make up the bytes. These are then processed as audio or video signals.
With the turntables of yesterday’s audio technology, the vibrating needles would suffer wear and tear. Lasers neither wear themselves out nor scratch the CDs, and they are a thousand times smaller than the thinnest needle. That is the secret of high-quality reproduction and the high quantity of content that can be compressed into an optical disc.
C.K.N. Patel recalls how, in the 1960s, the US defence department was the organisation that evinced the greatest interest in his carbon dioxide laser. “The launch of the Sputnik by the Soviet Union created virtual panic,” he says. “That was excellent, since any R&D project which
the military thought remotely applicable to defence got generously funded.” ‘Peacenik’ Patel, who is passionate about nuclear disarmament, is happy to see that the apocalyptic ‘Third Eye’ has found peaceful applications in manufacturing and IT. Patel refuses to retire and is busy,
in southern California, trying to find more applications of lasers for health and pollution problems.
To get into the extremely important application of lasers in communications, we need to look at fibre optics more closely.
DUG UP ROADS
Outside telecom circles, fibre optics is not very popular among city dwellers in India. Because, in the past couple of years, hundreds of towns and cities in India have been dug up on an precedented scale. The common refrain is: “They are laying fibre-optic cable”. Fibre optics has created an obstacle course for pedestrians and drivers while providing grist to the mills of cartoonists like R.K. Laxman. Being an optimist, I tell my neighbours, “Soon we will have a bandwidth infrastructure fit for the twenty-first century.” What is bandwidth? It is an indication of the amount of information you can receive per second, where ‘information’ can mean words, numbers, pictures, sounds or films.
Bandwidth has nothing to do with the diameter of the cable that brings information into our homes. In fact, the thinnest fibres made of glass— thinner than human hair—can bring a large amount of information into our homes and offices at a reasonable cost. And that is why fibre optics is playing a major role in the IT revolution.
It is only poetic justice that words like fibre optics are becoming popular in India. Very few Indians know that an Indian, Narinder Singh Kapany, a pioneer in the field, coined them in 1960. We will come to his story later on, but before that let us look at what fibre optics is.
It all started with queries like: Can we channel light through a curved path, even though we know that light travels in a straight line? Why is that important? Well, suppose you want to examine an internal organ of the human body for diagnostic or surgical purposes. You would need a flexible pipe carrying light. Similarly, if you want to communicate by using light signals, you cannot send light through the air for long distances; you need a flexible cable carrying light over such distances.
The periscopes we made as class projects when we were in school, using cardboard tubes and pieces of mirror, are actually devices to bend light. Bending light at right angles as in a periscope was simple. Bending light along a smooth curve is not so easy. But it can be done, and that is what is done in optic fibre cables.
For centuries people have built canals or viaducts to direct water for irrigation or domestic use. These channels achieve maximum effect if the walls or embankments do not leak. Similarly, if we have a pipe whose insides are coated with a reflecting material, then photons or waves can be directed along easily without getting absorbed by the wall material. A light wave gets reflected millions of times inside such a pipe (the number depending on the length and diameter of the pipe and the narrowness of the light beam). This creates the biggest problem for pipes carrying light. Even if we can get coatings with 99.99 per cent reflectivity, the tiny leakage’ of 0.01 per cent on each reflection can result in a near-zero signal after 10,000 reflections.
Here a phenomenon called total internal reflection comes to the rescue. If we send a light beam from water into air, it behaves peculiarly as we increase the angle between the incident ray and the perpendicular. We reach a point when any increase in the angle of incidence results in the light not leaving the water and, instead, getting reflected back entirely. This phenomenon is called total internal reflection. Any surface, however finely polished, absorbs some light, and hence repeated reflections weaken a beam. But total internal reflection is a hundred per cent, which means that if we make a piece of glass as non-absorbent as possible, and if we use total internal reflection, we can carry a beam of light over long distances inside a strand of glass. This is the principle used in fibre optics.
The idea is not new. In the 1840s, Swiss physicist Daniel Collandon and French physicist Jacques Babinet showed that light could be guided along jets of water. British physicist John Tyndall popularised the idea further through his public demonstrations in 1854, guiding light in a jet of water flowing from a tank. Since then this method has been commonly used in water fountains. If we keep sources of light that change their colour periodically at the fountainhead, it appears as if differently coloured water is springing out of the fountain.
Later many scientists conceived of bent quartz rods carrying light, and even patented some of these inventions. But it took a long time for these ideas to be converted into commercially viable products. One of the main hurdles was the considerable absorption of light inside glass rods.
Narinder Singh Kapany recounted to the author, “When I was a high school student at Dehradun in the beautiful foothills of the Himalayas, it occurred to me that light need not travel in a straight line, that it could be bent. I carried the idea to college. Actually it was not an idea but the statement of a problem. When I worked in the ordnance factory in Dehradun after my graduation, I tried using right-angled prisms to bend light. However, when I went to London to study at the Imperial College and started working on my thesis, my advisor, Dr Hopkins, suggested that I try glass cylinders instead of prisms. So I thought of a bundle of thin glass fibres, which could be bent easily. Initially my primary interest was to use them in medical instruments for looking inside the human body. The broad potential of optic fibres did not dawn on me till 1955. It was then that I coined the term fibre optics.”
Kapany and others were trying to use a glass fibre as a light pipe or, technically speaking, a ‘dielectric wave guide’. But drawing a fibre of optical quality, free from impurities, was not an easy job.
Kapany went to the Pilkington Glass Company, which manufactured glass fibre for non-optical purposes. For the company, the optical quality of the glass was not important. “I took some optical glass and requested them to draw fibre from that,” says Kapany. “I also told them that I was going to use it to transmit light. They were perplexed, but humoured me.” A few months later Pilkington sent spools of fibre made of green glass, which is used to make beer bottles. “They had ignored the optical glass I had given them. I spent months making bundles of fibre from what they had supplied and trying to transmit light through them, but no light came out. That was because it was not optical glass. So I had to cut the bundle to short lengths and then use a bright carbon arc source.”
Kapany was confronted with another problem. A naked glass fibre did not guide the light well. Due to surface defects, more light was leaking out than he had expected. To transmit a large image he would have needed a bundle of fibres containing several hundred strands; but contact between adjacent fibres led to loss of image resolution. Several people then suggested the idea of cladding the fibre. Cladding, when made of glass of a lower refractive index than the core, reduced leakages and also prevented damage to the core. Finally, Kapany was successful; he and Hopkins published the results in 1954 in the British journal Nature.
Kapany then migrated to the US and worked further in fibre optics while teaching at Rochester and the Illinois Institute of Technology. In 1960, with the invention of lasers, a new chapter opened in applied physics. From 1955 to 1965 Kapany was the lead author of dozens of technical and popular papers on the subject. His writings spread the gospel of fibre optics, casting him as a pioneer in the field. His popular article on fibre optics in the Scientific American in 1960 finally established the new term (fibre optics); the article constitutes a reference point for the subject even today. In November 1999, Fortune magazine published profiles of seven people who have greatly influenced life in the twentieth century but are unsung heroes. Kapany was one of them.
BELL WAS THERE, TOO
If we go back into the history of modern communications involving electrical impulses, we find that Alexander Graham Bell patented an optical telephone system in 1880. He called this a ‘photophone’. Bell converted speech into electrical impulses, which he converted into light flashes. A photosensitive receiver converted the signals back into electrical impulses, which were then converted into speech. But the atmosphere does not transmit light as reliably as wires do; there is heavy atmospheric absorption, which can get worse with fog, rain and other impediments. As there were no strong and directional light sources like lasers at that time, optical communications went into hibernation. Bell’s earlier invention, the telephone, proved far more practical. If Bell yearned to send signals through the air, far ahead of his time, we cannot blame him; after all, it’s such a pain digging and laying cables.
In the 1950s, as telephone networks spread, telecommunications engineers sought more transmission bandwidth. Light, as a carrying medium, promised the maximum bandwidth. Naturally, optic fibres attracted attention. But the loss of intensity of the signal was as high as a decibel per metre. This was fine for looking inside the body, but communications operated over much longer distances and could not tolerate losses of more than ten to twenty decibels per kilometre.
Now what do decibels have to do with it? Why is signal loss per kilometre measured in decibels? The human ear is sensitive to sound on a logarithmic scale; that is why the decibel scale came into being in audio engineering, in the first place. If a signal gets reduced to half its strength over one kilometre because of absorption, after two kilometres it will become a fourth of its original strength. That is why communication engineers use the decibel scale to describe signal attenuation in cables.
In the early 1969s signal loss in glass fibre was one decibel per metre, which meant that after traversing ten metres of the fibre the signal was reduced to a tenth of its original strength. After twenty metres the signal was a mere hundredth its original strength. As you can imagine, after traversing a kilometre no perceptible signal was left.
A small team at the Standard Telecommunications Laboratories in the UK was not put off by this drawback. This group was headed by Antoni Karbowiak, and later by a young Shanghai-born engineer, Charles Kao. Kao studied the problem carefully and worked out a proposal for long-distance communications through glass fibres. He presented a paper at a London meeting of the Institution of Electrical Engineers in 1966, pointing out that the optic fibre of those days had an information-carrying capacity of one GHz, or an equivalent of 200 TV channels, or more than 200,000 telephone channels. Although the best available low-loss material then showed a loss of about 1,000 decibels/kilometre (dB/km), he claimed that materials with losses of just 10-20 dB/km would eventually be developed.
With Kao almost evangelistically promoting the prospects of fibre communications, and the British Post Office (the forerunner to BT) showing interest in developing such a network, laboratories around the world tried to make low-loss fibre. It took four years to reach Kao’s goal of 20 dB/km. At the Corning Glass Works (now Corning Inc.), Robert Maurer, Donald Keck and Peter Schultz used fused silica to achieve the feat. The Corning breakthrough opened the door to fibre-optic communications. In the same year, Bell Labs and a team at the Ioffe Physical Institute in Leningrad (now St Petersburg) made the first semiconductor lasers, able to emit a continuous wave at room temperature. Over the next several years, fibre losses dropped dramatically, aided by improved fabrication methods and by the shift to longer wavelengths where fibres have inherently lower attenuation. Today’s fibres are so transparent that if the Pacific Ocean, which is several kilometres deep, were to be made of this glass we could see the ocean bed!
Note one point here. The absorption of light in glass depends not only on the chemical composition of the glass but also on the wavelength of light that is transmitted through it. It has been found that there are three windows with very low attenuation: one is around 900 nanometres, the next at 1,300 nm and the last one at 1,550 nm. Once engineers could develop lasers with those wavelengths, they were in business. This happened in the 1970s and 1980s, thanks to Herbert Kroemer’s hetero-structures and many hard-working experimentalists.
REPEATERS AND ‘CHINESE WHISPERS’
All telephone systems need repeater stations at every few kilometres to receive the signal, amplify it and re-send it. Fibre optic systems need stations every few kilometres to receive a weak light signal, convert it into electronic signal, amplify it, use it to modulate a laser beam again, and re-send it. This process is exposed to risk of noise and errors creeping into the signal; the system needs to get rid of the noise and re-send a fresh signal. It is like a marathon run, where the organisers place tables with refreshing drinks all along the route so that the tired and dehydrated runners can refresh themselves. This means a certain delay, but the refreshment is absolutely essential.
Submarine cables must have as few points as possible where the system can break down because, once the cable is laid several kilometres under the sea, it becomes virtually impossible to physically inspect faults and repair them.
The development, in the 1980s, of fibre amplifiers, or fibres that act as amplifiers, has greatly facilitated the laying of submarine optic fibre cables. This magic is achieved through an innovation called the erbium doped fibre amplifier. Sections of fibre carefully doped with the right amount of erbium—a rare earth element—act as laser amplifiers.
While fibre amplifiers reduce the requirement of repeater stations, they cannot eliminate the need for them. That is because repeater stations not only amplify the signal, they also clean up the noise (whereas fibre amplifiers amplify the signal, noise and all). In fact, they add a little bit of their own noise. This is like the popular party game called Chinese whispers. If there is no correction in between, the message gets transmitted across a distance, but in a highly distorted fashion.
Can we get rid of these repeater stations altogether and send a signal which does not need much amplification or error correction over thousands of kilometres? That’s a dream for every submarine cable company, though perhaps not a very distant one.
The phenomenon being used in various laboratories around the world to create such a super-long-distance runner is called a ‘soliton’ or a solitary wave. A Dutch gentleman first observed solitary waves nearly 300 years ago while riding along the famous canals of the Netherlands. He found that as boats created waves in canals, some waves were able to travel enormously long distances without dissipating themselves. They were named solitary waves, for obvious reasons. Scientists are now working on creating solitons of light that can travel thousands of kilometres inside optical fibres without getting dissipated.
As and when they achieve it, they will bring new efficiencies to fibre optic communications. Today, any signal is a set of waves differing in wavelength by very small amounts. Since the speeds of different wavelengths of light differ inside glass fibres, over a large distance the narrow packet tends to loosen up, with some portion of information appearing earlier and some later. This is called ‘dispersion’, something similar to the appearance of a colourful spectrum when light passes through a glass prism or a drop of rain. Solitons seem to be unaffected by dispersion. Long-distance cable companies are eagerly awaiting the conversion of these cutting-edge technologies from laboratory curiosities to commercial propositions.
Coming down to earth, we find that even though fibre optic cable prices have crashed in recent years, the cost of terminal equipment remains high. That is why it is not yet feasible to lay fibre optic cable to every home and office. For the time being, we have to remain content with such cables being terminated at hubs supporting large clusters of users, and other technologies being used to connect up the ‘last mile’ between the fibre optic network and our homes and offices.
FURTHER READING
1. “Zur Quantentheorie der strahlung” (Towards a quantum theory of radiation)—Albert Einstein, Physikalische Zeitschrift, Volume 18 (1917), pp 121-128 translated as “Quantum Theory of Radiation and Atomic Processes,” in Henry A. Boorse and Lloyd Motz (eds.) The World of the Atom, Volume II, Basic Books, 1966, pp 884-901
2. Charles Townes—Nobel Lecture, 1964 (www.nobel.se/physics/laureates/ 1964/townes-lecture.html)
3. N.G. Basov—Nobel Lecture, 1964 (http://www.nobel.se/physics/laureates/1964/basov-lecture.html)
4. Lasers Theory and Applications—K. Thyagarajan, A.K. Ghatak, Macmillan India Ltd, 2001.
5. Chaos, Fractals and Self-Organisation: New perspectives on complexity in nature—Arvind Kumar, National Book Trust, India, 1996
6. Semiconductor devices Basic principle—Jasprit Singh, John Wiley, 2001.
7. Herbert Kroemer—Nobel Lecture, 2000 (www.nobel.se/physics/laureates/2000/kroemer-lecture.html ).
8. Zhores Alferov—Nobel Lecture, 2000 (www.nobel.se/physics/laureates/2000/alferov-lecture.html ).
9. Diminishing Dimensions—Elizabeth Corcoran and Glenn Zorpette,Scientific American, Jan 22, 1998.
10. Fiber Optics—Jeff Hecht, Oxford University Press, New York, 1999.
11. Fiber Optics—N.S. Kapany, Scientific American, November 1960.
12. Fibre Optics—G.K. Bhide, National Book Trust, India, 2000.
13. “Beyond valuations”—Shivanand Kanavi, Business India, Sep 17-30, 2001.
(http://reflections-shivanand.blogspot.com/2007/08/tech-pioneers.html)
Sunday, January 24, 2010
Saturday, January 23, 2010
Interview: Justice Hosbet Suresh (Retd)
Terrorism and Judicial Reforms
Shivanand Kanavi interviewed Justice Hosbet Suresh (Retd) recently regarding several topical issues regarding terrorism and the law and urgent reforms required in the judicial system in India. Here are excerpts:
(From:http://www.lokraj.org.in/?q=node/561)
Shivanand: Justice Suresh there are several topics I want to cover in this conversation for my education as well as others. There is an argument that has been put forward for more than 25 years in India, that to deal with terrorist acts or terrorism we need laws which are so-called stronger than the current penal code and procedures. This justification has been given to enact special laws for preventive detention earlier and later TADA, POTA and MCOCA. This argument is again and again being put forward after the November Mumbai terrorist attack. It is said that for the Kasab trail we needed and MCOCA since IPC would not have helped. What is your view on that?
H Suresh: I remember, years ago when TADA was dropped, repealed in 1995, there was a seminar at the Tata Institute of Social Sciences where the top police officers, including Padmanabhayya who became later Home Secretary at the Central government, (for sometime he was also in charge of North-East) were present. He said, we cannot control the situation, unless there is a harsh law. I asked him, “what do you mean by ‘harsh law’. Is it a law that allows cutting your hands, cut your nose, allows confessions by use of torture, special procedure for the trial”!
The statement that you want a ‘harsh law’ has nothing to do with the act of terror, what you want is means to extract confession. This is fundamentally against our criminal jurisprudence. Our criminal jurisprudence has a very good feature, namely, any statement made to the police is not admissible by law, because you don’t know what the police have done to extract it. No confessional statement made to the police is admissible in law because we don’t know what happens in the police station. If at all the criminal wants to make a confession, he has to be taken to the magistrate under section 164 in the CrPC and the magistrate should be satisfied. Normally when the Magistrate records a confession he will send the police out. Then he will ask “do you want to make a confession? Has anyone induced you? Are there any problems; is there any pressure by anyone?” I found many cases where the magistrate says – no I am not recording go back. That is the procedure recognized under our criminal jurisprudence.
After this, the case goes before a sessions judge, a higher court, the case might rely on the statement. But again the accused can retract his statement, he can give any reason and in that event the judge will not rely on the statement. Even if the prosecution relies on it, the magistrate who recorded the confession is summoned and he will give evidence in the court. The magistrate can be cross-examined. These are safeguards because our experience shows that whenever power is given to the police to extract confession, they always use pressure. Pressure need not be only at the police station, pressure could be elsewhere. In Bombay in the bomb blast case, when they recorded all the statements of the accused, that was done cruelly, which you cannot describe in words. I wrote an article, where I said, “this is not 3rd degree, this is 4th degree”. They brought women folk from the homes of the accused. Brought them to the police station stripped them naked and said you think over it, otherwise we will engage in all sorts of acts. Then many gave their confessions. But in all such cases what happened was they went back to the prison and stated that this is how our statements were recorded under pressure. Therefore, you cannot use this kind of procedure at all.
When TADA was challenged in the Supreme Court with a very important case called Maneka Gandhi’s case, where the Supreme Court said, “not only the law must be just, but the procedure should be just as well”. Here the law itself is harsh and the procedure is equally harsh. Rarely in any TADA cases have the judges relied on the confession to convict the accused. In 98% of the cases they have not accepted the confessional statements.
SK: Nowadays, increasingly, SMSes, mobile transcripts, conversations which have been tapped, emails which have been tapped, or even the narco analysis etc are being cited as evidence in the media. Is that admissible under law as evidence?
HS: How do you admit a video recording as evidence? There are guidelines on how to record. I have conducted in a case, the Shivsena case, I am talking of 91’ elections, when Shivsena had recorded a video tape, which they displayed in different booths. A tape consisting of so many things about Hindu religion, Hindutva, and Bal Thackrey’s provocative speeches. There was no TADA at that time. In the court, a TV set was brought, the Tape was put there, and a metre was kept. Metre started at point number 1, goes on to a certain point and in between we have seen the following scenes. 1, 2, 3 …4 they have a record, and then they again started. What was the conversation…record. The transcript was prepared. How do you prove this was shown? The witnesses who have seen must come. The candidate challenging Shiv Sena brought his witnesses. So they were questioned if they would be able to identify what they see. They said yes. So again we start the same video tape and he will say yes this is what I saw. When you went there what was the scene that was going on? He will say ok at this point, and then we stop there. Witness identifies at this metre reading and the picture is of this scene. How long you were there? For ten minutes. What was the last scene you saw? This was the last scene. Nine times I had to display that in the court. It was a tedious job, but we did it.
As far as the Narco test is concerned. We have always felt that it is torture. We record evidence, it is a sort of statement, the person is not completely in control of his faculties, so in law that is not admissible. However, the question was how to get a statement by this, but this is an act of torture and you cannot do that. The court did not agree on that, still the matter is pending in the Supreme Court, there are 2 matters pending, one saying that Narco analysis could be allowed. But there is another matter also. And the judges have not given their ruling. Recently another petition has been filed challenging the Varun Gandhi case, the court will decide and that is also pending. I always felt, Narco analysis is infliction of torture. Torture has been defined in the international covenant as inflicting pain to extract information. This is what the police are doing, that is torture and torture is banned! Even our government has said and this is a not right! This right you cannot even repeal or take away. It is an important right, but courts are not observing, they are not taking it into account. It depends up on the matter under investigation. In most of the cases in India there are very few trained persons who know genuine investigation, most of them only know beating, torturing and so on. This is the sort of investigation that is being done!
After the TADA law allowed extraction of confessions, the police have lost the art of investigation. They think all cases can be solved by torturing and getting a confession. Conviction in TADA law is only 1.8% because the court would not accept that kind of statement. This whole thing is an exercise in futility and there is no sense in having that kind of law.
SK: I was informed that even in Guantanamo Bay, where terrorist suspects have been kept by US, despites being tortured for almost 8 years hardly 1% or 2% have been brought to trial.
That means, whatever has been obtained through a confession, even if it is made in front of a magistrate, and not in a lock up, it is just one piece of evidence. You need additional pieces of evidence to prove a terrorism charge.
HS: Actually it is a weak piece of evidence.
You need all kinds of corroboration and witnesses and so on and so forth to make the state’s case strong. You cannot rely on confession as a sole piece of evidence. However it seems to have been the main piece of evidence presented in terrorism related cases. If there is a diligent judge, they fail.
SK: By the way, is this a part of the English law that we inherited? - This issue of judiciary mistrusting the police and their methods.
HS: There are two views there. In England and even in America a confessional statement made to a police officer is admissible. But there they say that you don’t have to make a statement against yourself, but if you do, we will record it and use it against you. In India, however even during the British times, a statement made to the police is not admissible. So, the law itself, doesn’t trust the police. I would justify that.
Even in Kasab’s case some people raised in newspapers, ‘why should there be a trial, the whole world has seen what he has done, so he should be hanged’. I posed a question to the students, when I was lecturing on Human Rights, I said what are the human rights involved in the case of Kasab? I told them – article 9 and article 14 of ICCPR (International Covenant on Civil and Political Rights). Right to fair trial is a human right. They are all there in the ICCPR, our criminal jurisprudence by and large includes all those principles. We are making aberrations now, because we have failed in the evidence department.
There is one provision in the evidence act, section 27, if I am not mistaken, that a statement made by the accused to the extent that it leads to the discovery of a weapon or anything of that kind, can be admitted. For example – if a murder takes place with a knife, the murder weapon has to be found by the police, which will determine the measure of the wound, it would contain finger prints and so on. But you don’t know where the weapon is hidden. But at the police station, suppose the accused is willing to say where it is, then the police will record his statement, which will be in a form of a panchnama, in the presence of two witnesses. ‘I so and so know where this weapon is kept and I further say with which I committed offence’. This is again not signed by the accused but by the two panchas. Later when the case goes on, the panchas will have to be called as witness. They will have to say, ‘We were called to the police station where the statement was recorded by the police and we have signed’. But is the whole statement admissible in the court as evidence? Answer is – to the extent that the weapon is hidden, that part is admissible, but “with which I committed the murder”, is not allowed. So, judges like me, when that is given, we look into it and we tell the prosecutor, look this part is admissible and the other part is not, we put a bracket. So, only part of the statement is admissible and the weapon has to be recovered and panchas have to be there at the time of recovery also.
At a police station, to extract this information, torture is used. Sometimes weapons are also bogus, so they do a whole drama and go with the panchas and recover the weapon and make the accused sign a statement. Suppose a knife is used and has the blood stains of the victim. What they do, the knife and the blood soaked shirt are sent to the laboratory for forensics, the knife and shirt are sent together, and so from the shirt itself the blood could transfer. So, it’s also important how they were sent to forensics. The constable will say I packed them together and sent. Then we won’t accept that. But to get this done they inflict torture.
SK: Suppose there is a terrorist act – there is a bomb blast or whatever; there are witnesses who can say some things. Or there may be circumstantial things like it happened in the 93’ case, where they said something was hidden in a scooter and so on and so forth. Someone is caught and followed up and somebody confesses. But there is another aspect to terrorism and terrorist laws which is being talked about a lot, which is to do with preventing terrorist acts.
For example they say US has managed to prevent a terrorist attack after 9/11. It is given as a shining example for all states. They say they have been able to do it by stopping conspiracies, even UK has done that. They claim to have busted some sleeper cells and all kinds of things. In these instances it is purely based on confessions and maybe some other evidence, they will say we recovered a laptop and emails and so on. So, what is your view on that kind of a thing? Conspiracy by definition is something that is hidden so it is not documented.
HS: Well, it is a difficult thing to prove. But prevention of a crime is not only a matter of law, but more a matter of vigilance. If they need to arrest someone then of course the law is needed. There are provisions in the criminal procedure, if someone is likely to commit crime, 151 CRPC. If a police officer thinks he is likely to commit an offence, he can arrest him. The limit in that case is, he must prove it before the magistrate within 24 hours. If there is no justification the magistrate will release the person. So, it is vigilance plus law. Enough laws are there if they want. Years ago I wrote an article, Sec 151 is worse than TADA. In all cases where a poor man protests, he is arrested, then after a few hours he is released, under what law?-Under 151. The police will say he was going to commit an offence and put him in the lockup. This kind of thing goes on.
There is a poet in Hyderabad, Varavara Rao, he was detained over 13 times under 151. He was always let off on the 23rd hour. When he wanted to challenge, the court said, what is the need, you are free now.
How do you know by looking at a face that the person is capable of committing a crime? It is bound to be misused. Anyway there are many provisions that can be used. They don’t need a special law for doing what they want. A new law they have brought is the Unlawful Associations Act, preventive act. It has been used against SIMI. It is not that all of them are breaking the law, they are all members of a particular group, one or two may have indulged in some crime or even a bomb blast. But you round up people because of that association, that is fundamentally wrong.
SK: I have met and had discussions with some of them long back before they were banned, their ideas seem crazy but that doesn’t mean they are terrorists.
HS: Nowhere in the world, terrorism has been controlled by law. Even in England and America, they might have brought any kind of law, but they could not control terrorism by law. It can only be controlled by vigilance and general improvement of the society.
SK: Recently in Pakistan, before the offensive against the Taliban an agreement was made in the SWAT valley. They also have Macaulay’s law, in which there is a long delay. So they wanted these quick courts where many things are settled at community level. The current justice system is not giving them justice or it is delaying it so much that people are looking for some alternate dispute settlement mechanisms. At times people could even go to a local dada.
HS: Varadarajan did that in Bombay, he used to conduct regular courts. I was the judge at the city civil court, I resigned and started to practice at high courts, could not do lower courts. One day one party came to me with an appeal at the high court. What had happened is he had been ordered to vacate, he and his children. He had lost everywhere and hence came to the high court. I told him sorry you cannot succeed, you will not get anything. But we still filed it, but we told him that nothing could be done. After about 10 or 15 days the policeman came with the landlord to throw him out. He had no place to go, so he went to Yusuf Patel (a well known under world element). He asked the landlord how much he would get if the man vacated, he said 6 lakh. So Patel told him to give 3 lakh to that man and he would vacate. We could not have done that in court, we could not have compelled the parties to come to such an agreement. At the same time we cannot depend on such individuals for justice.
SK: You have seen the Indian Judicial System for 5 decades or more than that and there have been many attempts to reform it. People’s complaints are well known about the delay. You have said time and again that there is no piece meal solution. But still, looking at the current situation, what do you think needs to be done by any rational government?
HS: First thing we have to do is to increase the number of courts. It should be doubled or tripled straight away. In the 1987 law commission report, they said the total judge strength was around 10.5 judges per million commoners. They suggested that it should reach at least 50 judges per million populations and by 2000; this number was raised to 100 judges per million populations. Now we are in 2009, what have we done? Our judge strength is around 13 or 14 per million population. This is totally inadequate. In America it is nearly 200 judges per million population. One of the things which was suggested years ago was to run two shifts in courts.
I went to Philippines many years ago, in the capital Manila, in the magistrate’s post there are two shifts, one in the morning, and one in the afternoon. Morning starts at 9-9:30 and goes on till about 2 or so. And second from 2 to 8:30. So, you get double the courts straight away and the benefits are many. Suppose the witnesses are working they can request to come after 5:30. That is a good thing. We could have done this; even today we are not doing it. So, one important thing is the judge strength.
Second important thing is, more intensive training. Today most of the judges are not trained. Delays in trial in most cases are due to inefficiencies, incompetence. In fact, I thought in the bomb blast case in Mumbai in 1993, the case which ended in 2007, the trial took so long. Ok forget that, but even after the arguments were over, for three years he did not give any judgments at all! Then somebody filed a petition, some news item came in the press. He said, 'no I am keeping the matter for judgment'. He delivered his judgment in proceedings unknown to law that is everyday he would call 2 of the accused and read out and say I hold you guilty. Even in those cases where they were found not guilty they were not released. This procedure went on everyday for about 4 or 5 months. For sentencing again he called like this. So, totally he took over 13 or 14 months to complete the judgment. This procedure is not known to law. First of all, he could have prepared the judgment immediately, in stead of taking 3 years. He could have handed a copy of the judgment and finished the sentencing in one day, but no! All this shows, you require a competency commission. This judge in his lifetime has conducted only one case, which is this bomb blast case. This man who has no competence, no experience has been promoted to high court judge! So, we need better judge selection and of course we can simplify the procedure. They can seriously consider, what are the laws which can be codified. The more the laws, the more the offences.
SK: What is the difference between law and codification?
HS: There are laws which overlap here and there and even judgments, there could be re-establishment of judgments. Supreme Court has been there for more than 50 years now and has laid down many laws. If you go through these laws you will find many of them contradict each other. I think the American Court did that – restatement of American judgments. So, here Supreme Court can appoint a commission to go through all past judgments and that commission can see and say, this is a law and this is not. This way you don’t have conflicting judgments and you save so much of time.
When I was young there was a committee which came up with around 32 points to eliminate such errors, but they were not influential. For years, number of commissions have stated how the entire judicial system can be changed. But till today it has not been followed and it is all on paper.
SK: There are also special courts for various issues like motor vehicles, environment courts etc. What is your view on such specializations?
HS: In the Bombay high court, we thought of how to reduce arrears and decided to have a separate tribunal for bank related cases. That way the pressure on the high court is lessened and the bank tribunal will also develop expertise. Similarly for family and services tribunals. Dr. Sathe, from Pune, who is a professor of law has written a book about this and has analyzed about 77-78 tribunals, he concluded that all these tribunals have failed to bring in expertise, as a result they are all failures. The tribunals are there, but they have to be streamlined and properly manned, etc. By and large information commissions are independent from the judiciary. They have done fairly well, but in all these cases where we have appointed tribunals, we appoint retired judges and officials. Why? Why can’t we have a regular tribunal?
SK: Classic case is the river water tribunals, like Kaveri.
HS: That is because it is an interstate dispute. This Kaveri dispute has not been settled for years. I remember Justice Mukherjee was there for sometime, then he left and there is somebody else, this kind of thing.
SK: What is your view on recent agitations for transparency in the judiciary, accountability and to lay down some sort of a procedure for impeachment of a judge if needed, who are the judges accountable to and so on and so forth. You have written about it.
HS: Impeachment has failed. We had one experiment with Justice Ramaswami. That didn’t work. In America since 1936, there has been no impeachment. Only in exceptional cases, the judge can be impeached. But with the question of corruption, incompetence and minor aberrations, there is no procedure so far. Judges Enquiry Act of 1968 is there. If the Rajya Sabha wants to impeach a judge some 50 members have to sign a resolution. For Lok Sabha it is some 100 or more, and then it has to be passed by one of the houses. That will be referred under this Act. In the constitutional tribunal, one Supreme Court judge, one judge from any of the high courts, and one jurist has to be there. If the enquiry commission holds him guilty, then that has to be presented before the parliament. Each house should pass that resolution with a majority of 2/3 in each house.
SK: What do you think should be done?
HS: According to me, the constitution should be amended and there should be a provision of impeaching a judge of High court or Supreme Court on the charge of misdemeanor, inefficiency. There should be an independent tribunal, which could consist of, a judge of the SC (Supreme Court). The composition should be such that the tribunal should be more independent. That report should be sent to the chief justice, he can then send before the president requesting dismissal. In Malaysia, there is a provision to remove a judge of the High Court, on the ground of inefficiency, which we don’t have. Hong Kong, there is a provision for holding enquiry against sitting judges, by a committee of three judges of the local court. Even in England, they are thinking of having a performance commission and we can also have it here! Here the same collegiums in the Supreme Court are treated as the appointing committee. This is where we are stuck, this is not a solution. If a judiciary thinks that by not facing an enquiry they can maintain independence and confidence of the public, they are mistaken.
SK: One last question. Did our judicial system originate in the philosophy of Nyaya which tries to find truth, proceeding from doubt! You said earlier that truth and justice are two different things. Can you elaborate on that?
HS: The function of the judiciary is to establish whether an offence has been committed or not, according to the definition and the evidence that comes before the court. Whether it is true or not is not the point for the court. No body can know what the truth is. Even grama nyayalaya is subject to doubt because it is plagued by caste politics. Similarly village panchayats, today we are not sure. Ambedkar asked in the court, ‘Gandhi says India lives in its villages, but you cannot get justice there, it is all caste driven’. Ancient days are over; you have to have a modern system. It can work, but it has to be made to work.
SK: There is also another issue-- in the socialist countries it was initially there--Judges being more responsible and accountable to the community itself. The normal objection is that the judge needs to be an expert in law so how can he be elected.
HS: Yes that is there, but a judge cannot say he is not accountable because he is an expert. They have to be accountable to the constitution at least; they cannot say they are above. In England there is a committee, they lay down and define accountability. All conduct except their judgments are subject to accountability.
SK: This highly publicized trial which is going on of Kasab under media glare, which gets highly politicized is used to evoke passions. What is your observation on that?
HS: Kasab was the only terrorist we caught; let’s accept a theory that there is some kind of conspiracy. There is no direct evidence just a statement from Kasab and stuff from here and there. I have a feeling that the government now wants to show to Pakistan, all the evidence of this case has been played before the judge and he has accepted that. There is no challenge to that. So in the presence of the world, this is all only to gain a point! But if a judge is right he will say ‘what is the point of recording evidence in the absence of accused’? You have to have a case and accused has to be there, else it is not binding. The Prosecutor of this case thinks he is the ultimate actor. I don’t approve of his conduct in this case; he has no right to take sides. They are only there to present the case and preserve the innocent; people don’t understand what it is to preserve the innocent.
No officer connected to prosecution should assume that he is guilty, everyday he talks nonsense. This is all such a drama. Till it is argued and proved, he is innocent!
SK: In the case of wrongly accused innocents, who have been tortured and been in jail and finally when they are acquitted there is no compensation. Does the system not allow any kind of compensation?
HS: There is no provision. So many from bomb blast case have been acquitted but their whole life is gone! 15-16 years they have been dragged out, some of their wives and children have become destitute. There is no compensation, but we have to provide for it, there should be a provision. But we don’t have it!
SK: Onus has to be put on the prosecuting officers and all, because otherwise they will do whatever they want.
HS: I agree completely. Lucknow Development Authority case is there. If something goes wrong, the government will recover the compensation from the officers that is a good judgment. But how many follow this I don’t know which is very unfortunate.
SK: Thank you sir.
HS: You are most welcome.
Shivanand Kanavi interviewed Justice Hosbet Suresh (Retd) recently regarding several topical issues regarding terrorism and the law and urgent reforms required in the judicial system in India. Here are excerpts:
(From:http://www.lokraj.org.in/?q=node/561)
Shivanand: Justice Suresh there are several topics I want to cover in this conversation for my education as well as others. There is an argument that has been put forward for more than 25 years in India, that to deal with terrorist acts or terrorism we need laws which are so-called stronger than the current penal code and procedures. This justification has been given to enact special laws for preventive detention earlier and later TADA, POTA and MCOCA. This argument is again and again being put forward after the November Mumbai terrorist attack. It is said that for the Kasab trail we needed and MCOCA since IPC would not have helped. What is your view on that?
H Suresh: I remember, years ago when TADA was dropped, repealed in 1995, there was a seminar at the Tata Institute of Social Sciences where the top police officers, including Padmanabhayya who became later Home Secretary at the Central government, (for sometime he was also in charge of North-East) were present. He said, we cannot control the situation, unless there is a harsh law. I asked him, “what do you mean by ‘harsh law’. Is it a law that allows cutting your hands, cut your nose, allows confessions by use of torture, special procedure for the trial”!
The statement that you want a ‘harsh law’ has nothing to do with the act of terror, what you want is means to extract confession. This is fundamentally against our criminal jurisprudence. Our criminal jurisprudence has a very good feature, namely, any statement made to the police is not admissible by law, because you don’t know what the police have done to extract it. No confessional statement made to the police is admissible in law because we don’t know what happens in the police station. If at all the criminal wants to make a confession, he has to be taken to the magistrate under section 164 in the CrPC and the magistrate should be satisfied. Normally when the Magistrate records a confession he will send the police out. Then he will ask “do you want to make a confession? Has anyone induced you? Are there any problems; is there any pressure by anyone?” I found many cases where the magistrate says – no I am not recording go back. That is the procedure recognized under our criminal jurisprudence.
After this, the case goes before a sessions judge, a higher court, the case might rely on the statement. But again the accused can retract his statement, he can give any reason and in that event the judge will not rely on the statement. Even if the prosecution relies on it, the magistrate who recorded the confession is summoned and he will give evidence in the court. The magistrate can be cross-examined. These are safeguards because our experience shows that whenever power is given to the police to extract confession, they always use pressure. Pressure need not be only at the police station, pressure could be elsewhere. In Bombay in the bomb blast case, when they recorded all the statements of the accused, that was done cruelly, which you cannot describe in words. I wrote an article, where I said, “this is not 3rd degree, this is 4th degree”. They brought women folk from the homes of the accused. Brought them to the police station stripped them naked and said you think over it, otherwise we will engage in all sorts of acts. Then many gave their confessions. But in all such cases what happened was they went back to the prison and stated that this is how our statements were recorded under pressure. Therefore, you cannot use this kind of procedure at all.
When TADA was challenged in the Supreme Court with a very important case called Maneka Gandhi’s case, where the Supreme Court said, “not only the law must be just, but the procedure should be just as well”. Here the law itself is harsh and the procedure is equally harsh. Rarely in any TADA cases have the judges relied on the confession to convict the accused. In 98% of the cases they have not accepted the confessional statements.
SK: Nowadays, increasingly, SMSes, mobile transcripts, conversations which have been tapped, emails which have been tapped, or even the narco analysis etc are being cited as evidence in the media. Is that admissible under law as evidence?
HS: How do you admit a video recording as evidence? There are guidelines on how to record. I have conducted in a case, the Shivsena case, I am talking of 91’ elections, when Shivsena had recorded a video tape, which they displayed in different booths. A tape consisting of so many things about Hindu religion, Hindutva, and Bal Thackrey’s provocative speeches. There was no TADA at that time. In the court, a TV set was brought, the Tape was put there, and a metre was kept. Metre started at point number 1, goes on to a certain point and in between we have seen the following scenes. 1, 2, 3 …4 they have a record, and then they again started. What was the conversation…record. The transcript was prepared. How do you prove this was shown? The witnesses who have seen must come. The candidate challenging Shiv Sena brought his witnesses. So they were questioned if they would be able to identify what they see. They said yes. So again we start the same video tape and he will say yes this is what I saw. When you went there what was the scene that was going on? He will say ok at this point, and then we stop there. Witness identifies at this metre reading and the picture is of this scene. How long you were there? For ten minutes. What was the last scene you saw? This was the last scene. Nine times I had to display that in the court. It was a tedious job, but we did it.
As far as the Narco test is concerned. We have always felt that it is torture. We record evidence, it is a sort of statement, the person is not completely in control of his faculties, so in law that is not admissible. However, the question was how to get a statement by this, but this is an act of torture and you cannot do that. The court did not agree on that, still the matter is pending in the Supreme Court, there are 2 matters pending, one saying that Narco analysis could be allowed. But there is another matter also. And the judges have not given their ruling. Recently another petition has been filed challenging the Varun Gandhi case, the court will decide and that is also pending. I always felt, Narco analysis is infliction of torture. Torture has been defined in the international covenant as inflicting pain to extract information. This is what the police are doing, that is torture and torture is banned! Even our government has said and this is a not right! This right you cannot even repeal or take away. It is an important right, but courts are not observing, they are not taking it into account. It depends up on the matter under investigation. In most of the cases in India there are very few trained persons who know genuine investigation, most of them only know beating, torturing and so on. This is the sort of investigation that is being done!
After the TADA law allowed extraction of confessions, the police have lost the art of investigation. They think all cases can be solved by torturing and getting a confession. Conviction in TADA law is only 1.8% because the court would not accept that kind of statement. This whole thing is an exercise in futility and there is no sense in having that kind of law.
SK: I was informed that even in Guantanamo Bay, where terrorist suspects have been kept by US, despites being tortured for almost 8 years hardly 1% or 2% have been brought to trial.
That means, whatever has been obtained through a confession, even if it is made in front of a magistrate, and not in a lock up, it is just one piece of evidence. You need additional pieces of evidence to prove a terrorism charge.
HS: Actually it is a weak piece of evidence.
You need all kinds of corroboration and witnesses and so on and so forth to make the state’s case strong. You cannot rely on confession as a sole piece of evidence. However it seems to have been the main piece of evidence presented in terrorism related cases. If there is a diligent judge, they fail.
SK: By the way, is this a part of the English law that we inherited? - This issue of judiciary mistrusting the police and their methods.
HS: There are two views there. In England and even in America a confessional statement made to a police officer is admissible. But there they say that you don’t have to make a statement against yourself, but if you do, we will record it and use it against you. In India, however even during the British times, a statement made to the police is not admissible. So, the law itself, doesn’t trust the police. I would justify that.
Even in Kasab’s case some people raised in newspapers, ‘why should there be a trial, the whole world has seen what he has done, so he should be hanged’. I posed a question to the students, when I was lecturing on Human Rights, I said what are the human rights involved in the case of Kasab? I told them – article 9 and article 14 of ICCPR (International Covenant on Civil and Political Rights). Right to fair trial is a human right. They are all there in the ICCPR, our criminal jurisprudence by and large includes all those principles. We are making aberrations now, because we have failed in the evidence department.
There is one provision in the evidence act, section 27, if I am not mistaken, that a statement made by the accused to the extent that it leads to the discovery of a weapon or anything of that kind, can be admitted. For example – if a murder takes place with a knife, the murder weapon has to be found by the police, which will determine the measure of the wound, it would contain finger prints and so on. But you don’t know where the weapon is hidden. But at the police station, suppose the accused is willing to say where it is, then the police will record his statement, which will be in a form of a panchnama, in the presence of two witnesses. ‘I so and so know where this weapon is kept and I further say with which I committed offence’. This is again not signed by the accused but by the two panchas. Later when the case goes on, the panchas will have to be called as witness. They will have to say, ‘We were called to the police station where the statement was recorded by the police and we have signed’. But is the whole statement admissible in the court as evidence? Answer is – to the extent that the weapon is hidden, that part is admissible, but “with which I committed the murder”, is not allowed. So, judges like me, when that is given, we look into it and we tell the prosecutor, look this part is admissible and the other part is not, we put a bracket. So, only part of the statement is admissible and the weapon has to be recovered and panchas have to be there at the time of recovery also.
At a police station, to extract this information, torture is used. Sometimes weapons are also bogus, so they do a whole drama and go with the panchas and recover the weapon and make the accused sign a statement. Suppose a knife is used and has the blood stains of the victim. What they do, the knife and the blood soaked shirt are sent to the laboratory for forensics, the knife and shirt are sent together, and so from the shirt itself the blood could transfer. So, it’s also important how they were sent to forensics. The constable will say I packed them together and sent. Then we won’t accept that. But to get this done they inflict torture.
SK: Suppose there is a terrorist act – there is a bomb blast or whatever; there are witnesses who can say some things. Or there may be circumstantial things like it happened in the 93’ case, where they said something was hidden in a scooter and so on and so forth. Someone is caught and followed up and somebody confesses. But there is another aspect to terrorism and terrorist laws which is being talked about a lot, which is to do with preventing terrorist acts.
For example they say US has managed to prevent a terrorist attack after 9/11. It is given as a shining example for all states. They say they have been able to do it by stopping conspiracies, even UK has done that. They claim to have busted some sleeper cells and all kinds of things. In these instances it is purely based on confessions and maybe some other evidence, they will say we recovered a laptop and emails and so on. So, what is your view on that kind of a thing? Conspiracy by definition is something that is hidden so it is not documented.
HS: Well, it is a difficult thing to prove. But prevention of a crime is not only a matter of law, but more a matter of vigilance. If they need to arrest someone then of course the law is needed. There are provisions in the criminal procedure, if someone is likely to commit crime, 151 CRPC. If a police officer thinks he is likely to commit an offence, he can arrest him. The limit in that case is, he must prove it before the magistrate within 24 hours. If there is no justification the magistrate will release the person. So, it is vigilance plus law. Enough laws are there if they want. Years ago I wrote an article, Sec 151 is worse than TADA. In all cases where a poor man protests, he is arrested, then after a few hours he is released, under what law?-Under 151. The police will say he was going to commit an offence and put him in the lockup. This kind of thing goes on.
There is a poet in Hyderabad, Varavara Rao, he was detained over 13 times under 151. He was always let off on the 23rd hour. When he wanted to challenge, the court said, what is the need, you are free now.
How do you know by looking at a face that the person is capable of committing a crime? It is bound to be misused. Anyway there are many provisions that can be used. They don’t need a special law for doing what they want. A new law they have brought is the Unlawful Associations Act, preventive act. It has been used against SIMI. It is not that all of them are breaking the law, they are all members of a particular group, one or two may have indulged in some crime or even a bomb blast. But you round up people because of that association, that is fundamentally wrong.
SK: I have met and had discussions with some of them long back before they were banned, their ideas seem crazy but that doesn’t mean they are terrorists.
HS: Nowhere in the world, terrorism has been controlled by law. Even in England and America, they might have brought any kind of law, but they could not control terrorism by law. It can only be controlled by vigilance and general improvement of the society.
SK: Recently in Pakistan, before the offensive against the Taliban an agreement was made in the SWAT valley. They also have Macaulay’s law, in which there is a long delay. So they wanted these quick courts where many things are settled at community level. The current justice system is not giving them justice or it is delaying it so much that people are looking for some alternate dispute settlement mechanisms. At times people could even go to a local dada.
HS: Varadarajan did that in Bombay, he used to conduct regular courts. I was the judge at the city civil court, I resigned and started to practice at high courts, could not do lower courts. One day one party came to me with an appeal at the high court. What had happened is he had been ordered to vacate, he and his children. He had lost everywhere and hence came to the high court. I told him sorry you cannot succeed, you will not get anything. But we still filed it, but we told him that nothing could be done. After about 10 or 15 days the policeman came with the landlord to throw him out. He had no place to go, so he went to Yusuf Patel (a well known under world element). He asked the landlord how much he would get if the man vacated, he said 6 lakh. So Patel told him to give 3 lakh to that man and he would vacate. We could not have done that in court, we could not have compelled the parties to come to such an agreement. At the same time we cannot depend on such individuals for justice.
SK: You have seen the Indian Judicial System for 5 decades or more than that and there have been many attempts to reform it. People’s complaints are well known about the delay. You have said time and again that there is no piece meal solution. But still, looking at the current situation, what do you think needs to be done by any rational government?
HS: First thing we have to do is to increase the number of courts. It should be doubled or tripled straight away. In the 1987 law commission report, they said the total judge strength was around 10.5 judges per million commoners. They suggested that it should reach at least 50 judges per million populations and by 2000; this number was raised to 100 judges per million populations. Now we are in 2009, what have we done? Our judge strength is around 13 or 14 per million population. This is totally inadequate. In America it is nearly 200 judges per million population. One of the things which was suggested years ago was to run two shifts in courts.
I went to Philippines many years ago, in the capital Manila, in the magistrate’s post there are two shifts, one in the morning, and one in the afternoon. Morning starts at 9-9:30 and goes on till about 2 or so. And second from 2 to 8:30. So, you get double the courts straight away and the benefits are many. Suppose the witnesses are working they can request to come after 5:30. That is a good thing. We could have done this; even today we are not doing it. So, one important thing is the judge strength.
Second important thing is, more intensive training. Today most of the judges are not trained. Delays in trial in most cases are due to inefficiencies, incompetence. In fact, I thought in the bomb blast case in Mumbai in 1993, the case which ended in 2007, the trial took so long. Ok forget that, but even after the arguments were over, for three years he did not give any judgments at all! Then somebody filed a petition, some news item came in the press. He said, 'no I am keeping the matter for judgment'. He delivered his judgment in proceedings unknown to law that is everyday he would call 2 of the accused and read out and say I hold you guilty. Even in those cases where they were found not guilty they were not released. This procedure went on everyday for about 4 or 5 months. For sentencing again he called like this. So, totally he took over 13 or 14 months to complete the judgment. This procedure is not known to law. First of all, he could have prepared the judgment immediately, in stead of taking 3 years. He could have handed a copy of the judgment and finished the sentencing in one day, but no! All this shows, you require a competency commission. This judge in his lifetime has conducted only one case, which is this bomb blast case. This man who has no competence, no experience has been promoted to high court judge! So, we need better judge selection and of course we can simplify the procedure. They can seriously consider, what are the laws which can be codified. The more the laws, the more the offences.
SK: What is the difference between law and codification?
HS: There are laws which overlap here and there and even judgments, there could be re-establishment of judgments. Supreme Court has been there for more than 50 years now and has laid down many laws. If you go through these laws you will find many of them contradict each other. I think the American Court did that – restatement of American judgments. So, here Supreme Court can appoint a commission to go through all past judgments and that commission can see and say, this is a law and this is not. This way you don’t have conflicting judgments and you save so much of time.
When I was young there was a committee which came up with around 32 points to eliminate such errors, but they were not influential. For years, number of commissions have stated how the entire judicial system can be changed. But till today it has not been followed and it is all on paper.
SK: There are also special courts for various issues like motor vehicles, environment courts etc. What is your view on such specializations?
HS: In the Bombay high court, we thought of how to reduce arrears and decided to have a separate tribunal for bank related cases. That way the pressure on the high court is lessened and the bank tribunal will also develop expertise. Similarly for family and services tribunals. Dr. Sathe, from Pune, who is a professor of law has written a book about this and has analyzed about 77-78 tribunals, he concluded that all these tribunals have failed to bring in expertise, as a result they are all failures. The tribunals are there, but they have to be streamlined and properly manned, etc. By and large information commissions are independent from the judiciary. They have done fairly well, but in all these cases where we have appointed tribunals, we appoint retired judges and officials. Why? Why can’t we have a regular tribunal?
SK: Classic case is the river water tribunals, like Kaveri.
HS: That is because it is an interstate dispute. This Kaveri dispute has not been settled for years. I remember Justice Mukherjee was there for sometime, then he left and there is somebody else, this kind of thing.
SK: What is your view on recent agitations for transparency in the judiciary, accountability and to lay down some sort of a procedure for impeachment of a judge if needed, who are the judges accountable to and so on and so forth. You have written about it.
HS: Impeachment has failed. We had one experiment with Justice Ramaswami. That didn’t work. In America since 1936, there has been no impeachment. Only in exceptional cases, the judge can be impeached. But with the question of corruption, incompetence and minor aberrations, there is no procedure so far. Judges Enquiry Act of 1968 is there. If the Rajya Sabha wants to impeach a judge some 50 members have to sign a resolution. For Lok Sabha it is some 100 or more, and then it has to be passed by one of the houses. That will be referred under this Act. In the constitutional tribunal, one Supreme Court judge, one judge from any of the high courts, and one jurist has to be there. If the enquiry commission holds him guilty, then that has to be presented before the parliament. Each house should pass that resolution with a majority of 2/3 in each house.
SK: What do you think should be done?
HS: According to me, the constitution should be amended and there should be a provision of impeaching a judge of High court or Supreme Court on the charge of misdemeanor, inefficiency. There should be an independent tribunal, which could consist of, a judge of the SC (Supreme Court). The composition should be such that the tribunal should be more independent. That report should be sent to the chief justice, he can then send before the president requesting dismissal. In Malaysia, there is a provision to remove a judge of the High Court, on the ground of inefficiency, which we don’t have. Hong Kong, there is a provision for holding enquiry against sitting judges, by a committee of three judges of the local court. Even in England, they are thinking of having a performance commission and we can also have it here! Here the same collegiums in the Supreme Court are treated as the appointing committee. This is where we are stuck, this is not a solution. If a judiciary thinks that by not facing an enquiry they can maintain independence and confidence of the public, they are mistaken.
SK: One last question. Did our judicial system originate in the philosophy of Nyaya which tries to find truth, proceeding from doubt! You said earlier that truth and justice are two different things. Can you elaborate on that?
HS: The function of the judiciary is to establish whether an offence has been committed or not, according to the definition and the evidence that comes before the court. Whether it is true or not is not the point for the court. No body can know what the truth is. Even grama nyayalaya is subject to doubt because it is plagued by caste politics. Similarly village panchayats, today we are not sure. Ambedkar asked in the court, ‘Gandhi says India lives in its villages, but you cannot get justice there, it is all caste driven’. Ancient days are over; you have to have a modern system. It can work, but it has to be made to work.
SK: There is also another issue-- in the socialist countries it was initially there--Judges being more responsible and accountable to the community itself. The normal objection is that the judge needs to be an expert in law so how can he be elected.
HS: Yes that is there, but a judge cannot say he is not accountable because he is an expert. They have to be accountable to the constitution at least; they cannot say they are above. In England there is a committee, they lay down and define accountability. All conduct except their judgments are subject to accountability.
SK: This highly publicized trial which is going on of Kasab under media glare, which gets highly politicized is used to evoke passions. What is your observation on that?
HS: Kasab was the only terrorist we caught; let’s accept a theory that there is some kind of conspiracy. There is no direct evidence just a statement from Kasab and stuff from here and there. I have a feeling that the government now wants to show to Pakistan, all the evidence of this case has been played before the judge and he has accepted that. There is no challenge to that. So in the presence of the world, this is all only to gain a point! But if a judge is right he will say ‘what is the point of recording evidence in the absence of accused’? You have to have a case and accused has to be there, else it is not binding. The Prosecutor of this case thinks he is the ultimate actor. I don’t approve of his conduct in this case; he has no right to take sides. They are only there to present the case and preserve the innocent; people don’t understand what it is to preserve the innocent.
No officer connected to prosecution should assume that he is guilty, everyday he talks nonsense. This is all such a drama. Till it is argued and proved, he is innocent!
SK: In the case of wrongly accused innocents, who have been tortured and been in jail and finally when they are acquitted there is no compensation. Does the system not allow any kind of compensation?
HS: There is no provision. So many from bomb blast case have been acquitted but their whole life is gone! 15-16 years they have been dragged out, some of their wives and children have become destitute. There is no compensation, but we have to provide for it, there should be a provision. But we don’t have it!
SK: Onus has to be put on the prosecuting officers and all, because otherwise they will do whatever they want.
HS: I agree completely. Lucknow Development Authority case is there. If something goes wrong, the government will recover the compensation from the officers that is a good judgment. But how many follow this I don’t know which is very unfortunate.
SK: Thank you sir.
HS: You are most welcome.
Subscribe to:
Comments (Atom)